

Security Audit Report

ICN Fairdrop

v1.0

May 22, 2025

1

Table of Contents
Table of Contents 2
License 3
Disclaimer 4
Introduction 5

Purpose of This Report 5
Codebase Submitted for the Audit 5
Methodology 6
Functionality Overview 6

How to Read This Report 7
Code Quality Criteria 8
Summary of Findings 9
Detailed Findings 10

1. Claim window boundary edge case condition leads to lost claims 10
2. Misleading event parameter in VestingFinalized 10
3. Centralization risks 11
4. Repeated activation configuration enables retroactive vesting manipulation 12
5. Incorrect EIP-7201 storage slot pointer 12
6. ETH sent during the implementation deployment would be stuck 12
7. Lack of funding validation allows activation without sufficient allocated funds 13
8. Use of magic numbers decreases maintainability 13
9. Miscellaneous comments 14

2

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Impossible Cloud Network Foundation to perform
a security audit of Audit of the ICN Fairdrop distribution smart contract.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/ICN-Protocol/icn-fairdrop-distribution-smart-contract

Commit b3321aec5c2036b2a4db48a076480fb339fa5f87

Scope All contracts were in scope.

Fixes verified
at commit

5183e996ea52c2660db2ae134d38b408fd7a6c80

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

5

https://github.com/ICN-Protocol/icn-fairdrop-distribution-smart-contract

Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The ICN Fairdrop contract manages a token distribution system for ICN tokens with two
vesting schedule options.

It implements role-based access control for administrative functions like importing user data
and setting activation time.

Users are categorized into three allocation tiers (800, 525, or 250 tokens) with either a
default (7-step) or fast (2-step) vesting schedule. Once activated, eligible users can claim their
tokens during specific time windows for each vesting step.

6

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

7

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Low-Medium -

Code readability and clarity Medium-High -

Level of documentation Medium-High The client provided the
documentation of the contract.

Test coverage High forge coverage reports a test
coverage of 99.30%.

8

Summary of Findings

No Description Severity Status

1 Claim window boundary edge case condition leads
to lost claims

Minor Resolved

2 Misleading event parameter in
VestingFinalized

Minor Resolved

3 Centralization risks Minor Acknowledged

4 Repeated activation configuration enables
retroactive vesting manipulation

Minor Resolved

5 Incorrect EIP-7201 storage slot pointer Informational Resolved

6 ETH sent during the implementation deployment
would be stuck

Informational Resolved

7 Lack of funding validation allows activation without
sufficient allocated funds

Informational Acknowledged

8 Use of magic numbers decreases maintainability Informational Resolved

9 Miscellaneous comments Informational Resolved

9

Detailed Findings

1. Claim window boundary edge case condition leads to lost claims

Severity: Minor

In src/ICNFairdropDistribution.sol:160-161, the claimStep function validates
eligibility by checking whether block.timestamp falls within the inclusive range
[startTime, endTime], where endTime is calculated as startTime +
MAX_STEP_CLAIM_PERIOD. This inclusive condition implies that at the block where
block.timestamp is equal to endTime, the current step remains claimable.

However, this creates a scenario where two consecutive steps may simultaneously satisfy the
eligibility check. Specifically, if block.timestamp is equal to the previous step unlock time
plus MAX_STEP_CLAIM_PERIOD, both the current step (step = last) and the preceding
step (step = last - 1) pass the time check.

If the last step is claimed first in this edge case, the userData is cleared, causing the
subsequent step to become unclaimable, even though it was technically eligible, resulting in
potential loss of claim rights.

Recommendation

We recommend revising the steps’ time boundary logic to enforce non-overlapping claim
periods.

Status: Resolved

2. Misleading event parameter in VestingFinalized

Severity: Minor

In src/ICNFairdropDistribution.sol:123–137, the finalizeVesting function
emits the VestingFinalized event with the contract’s full balance at the time of
execution.

However, this does not accurately reflect the actual _amount parameter, which represents
the precise value transferred to the treasury.

As a result, the emitted event can falsely suggest that the entire contract balance was vested,
even if only a partial transfer occurred. This discrepancy may mislead off-chain event log
analyses and could result in misinterpretations.

Recommendation

10

We recommend modifying the finalizeVesting function to ensure the
VestingFinalized event emits the exact _amount value that is transferred to the
treasury.

Status: Resolved

3. Centralization risks

Severity: Minor

The smart contracts under review rely on specific roles to perform critical administrative
actions, creating centralized points of control that may be exploited if misused or
compromised. The following roles hold elevated privileges:

● DEFAULT_ADMIN_ROLE

○ Can invoke finalizeVesting to recover all tokens.

○ Has the authority to grant and revoke all other roles.

● UPGRADES_OPERATOR_ROLE

○ Authorized to upgrade the contract implementation, potentially introducing
arbitrary logic.

● UPLOADER_ROLE

○ Can import and remove user allocations at will.

○ Capable of removing users immediately before setActivateAt, preventing
user response or mitigation.

● BUSINESS_OPERATOR_ROLE

○ Controls the activation of vesting schedules, thereby influencing token
distribution timing.

This centralized design grants a small set of entities full operational control over contract
behavior and user entitlements, exposing the contract to risks in case the aforementioned
accounts are compromised.

Recommendation

We recommend enforcing strict key management and the usage of multi-signature accounts.

Status: Acknowledged

11

4. Repeated activation configuration enables retroactive vesting
manipulation

Severity: Minor

In src/ICNFairdropDistribution.sol:112-122, the setActivateAt function
allows an account holding the BUSINESS_OPERATOR_ROLE to set the dateTime when the
vesting will be activated.

However, this function can be executed multiple times, with subsequent invocations
overwriting the existing schedule, including past deadlines.

This retroactive modification may arbitrarily re-enable or disable claims or indefinitely delay
them, potentially undermining the trust in the vesting mechanism and misleading participants.

Recommendation

We recommend enforcing immutability of the vesting calendar once it has been activated by
preventing any further calls to setActivateAt after the initial invocation.

Status: Resolved

5. Incorrect EIP-7201 storage slot pointer

Severity: Informational

In src/ICNFairdropDistributionStorage.sol:39-41, the contract utilizes a
dedicated storage slot for its main data struct
ICNFairdropDistributionStorageData, following the EIP-7201 namespaced storage
pattern.

However, the constant ICN_TOKEN_DISTRIBUTION_STORAGE_SLOT holds a value
(0x9afe….6000) that does not match the value derived from the standard EIP-7201
calculation using the namespace "icnFairdropDistribution.storage".

Recommendation

We recommend changing the value to
0x5ddccec0f95808cd4366a65720a39599b50cad94662220621e68977d11acbf00.

Status: Resolved

6. ETH sent during the implementation deployment would be stuck

Severity: Informational

In src/ICNFairdropDistribution.sol:25, the constructor is marked as payable.

12

While this is a gas optimization that saves approximately 20-30 gas by avoiding EVM checks
for ETH transfers, any ETH mistakenly sent during the implementation contract deployment
would be permanently locked, as there is no mechanism to retrieve these funds from the
implementation contract.

Recommendation

We recommend removing the payable modifier from the constructor unless the minimal gas
savings are critical to the deployment process.

Alternatively, if keeping the payable modifier, add a clear comment warning that ETH should
not be sent during the implementation deployment.

Status: Resolved

7. Lack of funding validation allows activation without sufficient
allocated funds

Severity: Informational

In src/ICNFairdropDistribution.sol:112-122, the setActivateAt function can
be executed by the BUSINESS_OPERATOR_ROLE to activate the contract after user data has
been loaded via batchImportUserData.

However, there is no verification that the contract holds the necessary funds corresponding to
the total user allocations.

This omission could result in a scenario where users are unable to claim their allocated tokens
due to insufficient contract balance.

Recommendation

We recommend introducing a cumulative variable that tracks the total allocated amounts
during batchImportUserData. The setActivateAt function should then enforce a
check to ensure the contract’s balance is at least equal to this cumulative allocation before
proceeding with activation.

Status: Acknowledged

8. Use of magic numbers decreases maintainability

Severity: Informational

Throughout the codebase, hard-coded number literals without context or a description are
used. Using such “magic numbers” goes against best practices as they reduce code

13

readability and maintenance as developers are unable to easily understand their use and may
make inconsistent changes across the codebase.

Instances of magic numbers are listed below:

● src/ICNFairdropDistribution.sol:85,237,264,268,280 (0x7F - claim
mask)

● src/ICNFairdropDistribution.sol:256,274 (0x0003 - claim mask start)
● src/ICNFairdropDistribution.sol:237,264 (3 - claim mask bit shifting)

Recommendation

We recommend defining constants with descriptive variable names and comments.

Status: Resolved

9. Miscellaneous comments

Severity: Informational

Miscellaneous recommendations can be found below.

Recommendation

The following are some recommendations to improve the overall code quality and readability:

● Use != 0 instead of > 0 for non-zero checks to save gas across the multiple
instances where this pattern appears.

● In README.md, the documentation does not explicitly state that users permanently
lose their tokens if they do not claim them within the 30-day window for each vesting
step. We recommend updating the README.md to explicitly state that unclaimed
tokens for a given step are permanently lost after the 30-day claim window expires
and will eventually be transferred to the treasury via the finalizeVesting function.

● The userData mapping in src/ICNFairdropDistributionStorage.sol:15
uses the traditional anonymous syntax. We recommend refactoring the definition to
use named keys and values to mapping(address user => uint16 data)
userData for improved code clarity.

● Remove custom error NoTokensToTransfer defined in
src/interfaces/IICNFairdropDistributionErrors.sol:55, which is
unused.

● The for loops in src/ICNFairdropDistribution.sol use <counter>++
syntax. We recommend using unchecked { ++i; } and unchecked { ++step;
} for gas savings by avoiding unnecessary overflow checks.

14

● The expression step - 1 is calculated multiple times in the claimStep and
getVestingStepsInfo functions. We recommend calculating it once and storing it
in a local variable within the relevant scope to save gas.

● The getVestingStepsInfo function in
src/ICNFairdropDistribution.sol:205-206 reverts if vesting is not
activated or the user data is not found. We recommend returning an empty array or an
additional boolean to signify nothing to claim instead of reverting in these cases for a
smoother off-chain integration experience.

● Calls to calculateStepAmount in
src/ICNFairdropDistribution.sol:247 and isStepUnclaimed in
src/ICNFairdropDistribution.sol:233 within the
getVestingStepsInfo loop cause redundant SLOADs of userData. We
recommend creating internal function variants that accept the pre-loaded userData
as a parameter or inlining the logic to avoid repeated SLOADs within the loop.

Status: Resolved

15

	ICN Fairdrop
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​Claim window boundary edge case condition leads to lost claims
	2.​Misleading event parameter in VestingFinalized
	3.​ Centralization risks
	4.​Repeated activation configuration enables retroactive vesting manipulation
	5.​Incorrect EIP-7201 storage slot pointer
	6.​ETH sent during the implementation deployment would be stuck
	7.​ Lack of funding validation allows activation without sufficient allocated funds
	8.​Use of magic numbers decreases maintainability
	9.​ Miscellaneous comments

