
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Security Audit Report 

ICN Link Token 
 

 
 
 

 
v1.2 

March 11, 2025 

1 



 

Table of Contents 
Table of Contents 2 
License 3 
Disclaimer 4 
Introduction 5 

Purpose of This Report 5 
Codebase Submitted for the Audit 5 
Methodology 6 
Functionality Overview 6 

How to Read This Report 7 
Code Quality Criteria 8 
Summary of Findings 9 
Detailed Findings 10 

1. Potential for stuck tokens when mint receiver is a non-compliant ERC721 contract 10 
2. A batch transfer can be subject to DoS due to a malicious receiver 10 
3. Inconsistent revert pattern in case of disabled transfers 11 
4. Centralization risk in batchAdminSafeTransferFrom function 11 
5. Inaccurate date computation and lack of localization 12 
6. Incorrect expiration information if the contract is not active 12 
7. The contract’s admin can self-renounce their role 13 
8. Recommended ownership verification in batchAdminSafeTransferFrom function 13 
9. Miscellaneous comments 14 

 

2 



 

License 
 

 
 
THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES 
4.0 INTERNATIONAL LICENSE.  

 

3 

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/


 

Disclaimer 
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS 
AND WARRANTIES OF ANY KIND. 
 
THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT 
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. 
 
THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE 
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD 
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR 
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING 
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT. 
 
FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE 
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT 
LIMITATION WARRANTIES OR LIABILITIES. 
 
COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

This audit has been performed by 
 

Oak Security GmbH 
 

https://oaksecurity.io/  
info@oaksecurity.io

4 

https://oaksecurity.io/
mailto:info@oaksecurity.io


 

Introduction 

Purpose of This Report 

Oak Security GmbH has been engaged by Impossible Cloud Network Foundation to perform 
a security audit of ICN Link Token.   

The objectives of the audit are as follows: 

1.  Determine the correct functioning of the protocol, in accordance with the project 
specification. 

2.  Determine possible vulnerabilities, which could be exploited by an attacker. 

3.  Determine smart contract bugs, which might lead to unexpected behavior. 

4.  Analyze whether best practices have been applied during development. 

5.  Make recommendations to improve code safety and readability. 

This report represents a summary of the findings. 

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected 
execution paths may still be possible. The author of this report does not guarantee complete 
coverage (see disclaimer). 

Codebase Submitted for the Audit 
The audit has been performed on the following target: 
 

Repository https://github.com/ICN-Protocol/icn-link-smart-contract  

Commit 7cee3ededff8e1c953ab71036b3f34c71830d118 

Scope All contracts were in scope. 

Fixes verified 
at commit 

5e6433de6f78d4008f8c8a6e46382e22becb9628 
 
Note that only fixes to the issues described in this report have been 
reviewed at this commit. Any further changes such as additional features 
have not been reviewed. 

 

5 

https://github.com/ICN-Protocol/icn-link-smart-contract


 

Methodology 
The audit has been performed in the following steps: 

1. Gaining an understanding of the code base’s intended purpose by reading the 
available documentation. 

2. Automated source code and dependency analysis. 
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of 

best practice guidelines, including but not limited to: 
a. Race condition analysis 
b. Under-/overflow issues  
c. Key management vulnerabilities 

4. Report preparation 

Functionality Overview 
The Impossible Cloud Network (ICN) is transforming cloud computing by building the world’s 
first open cloud platform. By combining the power of cutting-edge blockchain technology with 
traditional cloud services, the protocol ensures unmatched flexibility and performance for all 
network participants. 

Thereby, the NFT smart contract ICN Link can be used to join the ICN either as a HyperNode 
or for staking purposes. 

 
 

6 



 

How to Read This Report 
This report classifies the issues found into the following severity categories: 

Severity Description 

Critical A serious and exploitable vulnerability that can lead to loss of funds, 
unrecoverable locked funds, or catastrophic denial of service. 

Major A vulnerability or bug that can affect the correct functioning of the 
system, lead to incorrect states or denial of service. 

Minor A violation of common best practices or incorrect usage of primitives, 
which may not currently have a major impact on security, but may do so 
in the future or introduce inefficiencies.  

Informational Comments and recommendations of design decisions or potential 
optimizations, that are not relevant to security. Their application may 
improve aspects, such as user experience or readability, but is not strictly 
necessary. This category may also include opinionated 
recommendations that the project team might not share.  

 

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved, 
or Resolved. 

Note that audits are an important step to improving the security of smart contracts and can 
find many issues. However, auditing complex codebases has its limits and a remaining risk is 
present (see disclaimer). 

Users of the system should exercise caution. In order to help with the evaluation of the 
remaining risk, we provide a measure of the following key indicators: code complexity, code 
readability, level of documentation, and test coverage. We include a table with these criteria 
below.  

Note that high complexity or low test coverage does not necessarily equate to a higher risk, 
although certain bugs are more easily detected in unit testing than in a security audit and vice 
versa.  

 

 

7 



 

Code Quality Criteria 
The auditor team assesses the codebase’s code quality criteria as follows: 
 

Criteria Status Comment 

Code complexity Low-Medium - 

Code readability and clarity  Medium-High - 

Level of documentation  Medium - 

Test coverage High forge coverage reports 100% 
coverage 

 

8 



 

Summary of Findings 
 

No Description Severity Status 

1 Potential for stuck tokens when mint receiver is a 
non-compliant ERC721 contract 

Minor Resolved 

2 A batch transfer can be subject to DoS due to a 
malicious receiver 

Minor Acknowledged 

3 Inconsistent revert pattern in case of disabled 
transfers 

Minor Resolved 

4 Centralization risk in 
batchAdminSafeTransferFrom function 

Minor Acknowledged 

5 Inaccurate date computation and lack of 
localization 

Informational Resolved 

6 Incorrect expiration information if the contract is 
not active 

Informational Resolved 

7 The contract’s admin can self-renounce their role Informational Acknowledged 

8 Recommended ownership verification in 
batchAdminSafeTransferFrom function 

Informational Acknowledged 

9 Miscellaneous comments Informational Resolved 

 

 

9 



 

Detailed Findings 
1. Potential for stuck tokens when mint receiver is a non-compliant 

ERC721 contract 

Severity: Minor 

In src/ICNPassport.sol:114-131, the batchMint function uses the _mint method 
to create tokens and assign them to specified addresses.  

However, _mint does not verify whether the recipient address is a contract capable of 
handling ERC721 tokens.  

If tokens are minted to a contract that does not implement the ERC721Receiver interface, the 
recipient will be unable to process or retrieve the tokens, potentially resulting in them being 
permanently stuck. 

Recommendation 

We recommend replacing _mint with _safeMint in the batchMint function. 

The _safeMint method ensures that tokens are minted only to addresses that are either 
externally owned accounts (EOAs) or contracts capable of handling ERC721 tokens by 
implementing the ERC721Receiver interface. 

Status: Resolved 

 

2. A batch transfer can be subject to DoS due to a malicious 
receiver 

Severity: Minor 

The ICNPassport token contract’s batchSafeTransferFrom method, defined in 
src/ICNPassport.sol:146-160, relies on the safeTransferFrom method for each 
transfer of the whole batch. This method performs an underlying onERC721Received 
acceptance check which reverts in case the receiver does not support ERC-721 tokens, or if it 
is purposefully reverted by a malicious receiver.  

Consequently, one failing receiver is sufficient to revert a whole batch transfer effectively 
causing a temporary denial of service. 

Recommendation 

We recommend implementing a boolean switch and a try-catch pattern which allows the user 
to decide whether to revert on failing transfers or skip them. 

10 



 

Status: Acknowledged 

The ICN Team recognizes that batch transfers could be vulnerable to DoS attacks due to a 
malicious recipient. However, the team has decided against duplicating OpenZeppelin's 
implementation to avoid taking on responsibility for maintaining that specific code. 
 

3. Inconsistent revert pattern in case of disabled transfers 

Severity: Minor 

The ICNPassport token contract’s batchSafeTransferFrom method, defined in 
src/ICNPassport.sol:146-160, checks for the transfersDisabled state within the 
transferAllowed modifier, i.e. it immediately reverts in case transfers are disabled. 

However, the ICNPassport token contract also inherits the public methods 
transferFrom and safeTransferFrom from the ERC721Upgradeable base contact. 
These methods are not overridden and therefore do not have the transferAllowed 
modifier. In case a user attempts a transfer using these methods, the revert will happen at a 
later point within the overridden _update method which also performs the 
transfersDisabled check.  

Consequently, the current revert pattern in case of disabled transfers is inconsistent and 
further leads to multiple superfluous transfersDisabled checks in the 
batchSafeTransferFrom method due to the underlying _update method. 

Recommendation 

We recommend the following mutually exclusive mitigation measures: 

● Remove the transferAllowed modifier from the batchSafeTransferFrom 
method and purely rely on the transfersDisabled check in the underlying 
_update method. 

● Or, override the transferFrom and safeTransferFrom methods and add the 
transferAllowed modifier. This allows to reconsider removing the overridden 
_update method. 

Status: Resolved 

 

4. Centralization risk in batchAdminSafeTransferFrom function 

Severity: Minor 

In src/ICNLink.sol:181-220 the batchAdminSafeTransferFrom function 
introduces significant centralization risks by granting the DEFAULT_ADMIN_ROLE authority 
to transfer NFTs between addresses without the owners’ consent. 

11 



 

If the admin key is compromised or maliciously controlled, unauthorized NFT transfers could 
occur, leading to asset seizures or unfair redistribution. Such a function creates a single point 
of failure that threatens user trust and asset security. 

Recommendation 

We recommend removing the batchAdminSafeTransferFrom functionality. 

Status: Acknowledged 

The ICN Team states that the batchAdminSafeTransferFrom function is a temporary 
measure implemented to facilitate the initial launch of the platform. This function ensures 
administrative control during the early stages but is not intended as a permanent feature.  

The ICN Team confirms that this functionality will be removed in a future version. 

 

5. Inaccurate date computation and lack of localization 

Severity: Informational 

In src/libraries/DateTime.sol:17-18, the date computation truncates the last day 
by removing any remaining hours without any rounding strategy. As a result, even hours as 
late as 23:59 are truncated. 

Additionally, the computation assumes the UTC timezone without accounting for the user’s 
localization. 

Recommendation 

We recommend storing only the timestamp within the smart contract and delegating all 
date-time formatting and localization to the user interface. 

Status: Resolved 

 

6. Incorrect expiration information if the contract is not active 

Severity: Informational 

In src/ICNPassport.sol:166-168, the isExpired function determines whether a 
token is expired based on its activation time and duration. 

However, if the contract is not yet activated, the getDurationTime function returns 0, and 
when combined with the activationTime, which is also 0, the result is always less than 
the current block timestamp.  

12 



 

This causes the function to incorrectly indicate that the token has expired, even though the 
contract has not been activated. Such behavior misleads users and could disrupt the token’s 
intended lifecycle. 

Recommendation 

We recommend modifying the isExpired function to include a preliminary validation check 
that verifies whether the contract is activated. If the contract is not activated, the function 
should return an explicit error or status message. 

Status: Resolved 

 

7. The contract’s admin can self-renounce their role 

Severity: Informational 

The ICNPassport token contract inherits the public methods revokeRole and 
renounceRole from the AccessControlUpgradeable base contact. 

However, these methods also facilitate (accidental) self-renouncing of the 
DEFAULT_ADMIN_ROLE which can be detrimental to the token contract's functionality in 
case the contract’s other roles were not properly set up before. 

Recommendation 

We recommend reevaluating this risk and overriding the revokeRole and renounceRole 
methods to prevent self-renouncing of the admin if deemed necessary for the given 
application. 

Status: Acknowledged 

The ICN Team acknowledges that the contract's administrator has the ability to renounce their 
role. To avoid the complexities of maintaining a copied implementation from OpenZeppelin, 
the team has opted not to duplicate their code. Instead, ICN plans to use multi-signature 
wallets for each contract role, providing an added layer of security and minimizing the risk of 
human error. 
 

8. Recommended ownership verification in 
batchAdminSafeTransferFrom function 

Severity: Informational 

In src/ICNLink.sol:181-220 the batchAdminSafeTransferFrom function directly 
transfers the given tokenIds to the specified receivers irrespective of their previous 
owners. 

Consequently, tokens could be transferred from unintended previous owners. 

13 



 

Recommendation 

We recommend adding a from parameter to the function to facilitate validation of the tokens’ 
previous owner. 

Status: Acknowledged 

 

9. Miscellaneous comments 

Severity: Informational 

Miscellaneous recommendations can be found below. 

Recommendation 

The following are some recommendations to improve the overall code quality and readability: 

● The SECONDS_PER_DAY constant in src/libraries/DateTime.sol:5 could be 
simplified using Solidity’s time units, e.g. SECONDS_PER_DAY = 1 days. 

● In src/ICNPassport.sol:219-224, we recommend considering an explicit way 
to render expired NFTs where years_ == months_ == days_ == 0. 

● The JSON string, defined in src/ICNPassport.sol:232-236, does not exactly 
match the ERC721 Metadata JSON Schema. We recommend revising the JSON string 
to avoid potential compatibility issues if deemed necessary for the given application. 

Status: Resolved 

 
 

14 

https://eips.ethereum.org/EIPS/eip-721#specification

	ICN Link Token 
	Table of Contents 
	 
	License 
	 
	Disclaimer 
	Introduction 
	Purpose of This Report 
	Codebase Submitted for the Audit 
	Methodology 
	Functionality Overview 

	How to Read This Report 
	 
	Code Quality Criteria 
	 
	Summary of Findings 
	 
	Detailed Findings 
	1.​Potential for stuck tokens when mint receiver is a non-compliant ERC721 contract 
	2.​A batch transfer can be subject to DoS due to a malicious receiver 
	3.​Inconsistent revert pattern in case of disabled transfers 
	4.​Centralization risk in batchAdminSafeTransferFrom function 
	5.​Inaccurate date computation and lack of localization 
	6.​Incorrect expiration information if the contract is not active 
	7.​The contract’s admin can self-renounce their role 
	8.​Recommended ownership verification in batchAdminSafeTransferFrom function 
	9.​Miscellaneous comments 

	 

