

Security Audit Report

ICN Protocol

v1.0

May 2, 2025

1

Table of Contents
Table of Contents 2
License 4
Disclaimer 5
Introduction 6

Purpose of This Report 6
Codebase Submitted for the Audit 6
Methodology 8
Functionality Overview 8

How to Read This Report 9
Code Quality Criteria 10
Summary of Findings 11
Detailed Findings 13

1. Missing slashing impact handling in LinkRewards contract gives no disincentive to
misbehave after staking NFTs 13
2. HyperNodes cannot be removed or deactivated once registered 14
3. No upper bound validation for staking and unstaking periods 14
4. Incomplete module removal leaves stale selector hash in Proxy storage 15
5. Fixed reward allocation discrepancy 15
6. Incorrect deadline handling in rewards calculation 16
7. Partial input validation for HyperNodes registration and update 16
8. Inconsistent era notification in multiple event emissions 17
9. Immediate modification of minLinkStakingPeriod by the admin may unfairly extend
lock duration for existing stakes 17
10. Incorrect annual duration constant may cause reward and delegation schedule
miscalculations 18
11. Assumptions in NFT staking logic allow potential misuse under transfer-enabled
scenarios 18
12. Unsafe cast from uint256 to uint32 may limit specific NFT ID staking 19
13. Retroactive rewards curve updates allow overcompensation for unclaimed staking
periods 20
14. Centralization risks 20
15. Interface documentation inconsistencies may mislead about reward eligibility and
node types 21
16. Redundant contract imports across multiple files 22
17. Missing public getters for external contract addresses 22
18. Diamond proxy implementation lacks EIP-2535 compliance 23
19. Contracts should implement a two-step ownership transfer 23
20. Inconsistent initialization event pattern in the LinkStaking contract 24
21. No maximum limit on reward curve array size 24
22. Possible rewards denial-of-service in case that claimed rewards exceed total

2

rewards 25
23. The getHyperNode view function reverts unexpectedly 25
24. Miscellaneous comments 26

3

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

4

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/
info@oaksecurity.io

5

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Impossible Cloud Network Foundation to perform
a security audit of ICN Protocol (HyperNodes release) Smart Contracts.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/ICN-Protocol/icn-protocol

Commit 3c01a79f0632053979aeda2d690821b4719b3433

Scope The scope is restricted to the following contracts:

● Proxy

● AccessControl

● ICNRegistry

○ registerHyperNode()

6

https://github.com/ICN-Protocol/icn-protocol

○ getHyperNode()

● LinkStaking

● LinkRewards

● ExternalContractManager

Fixes verified
at commit

aa970308591b8706bd7a66cf0bc4b5c7732ed74d

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

7

Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The ICN protocol is a modular smart contract that enables decentralized registration, staking,
and reward distribution for network participants such as Hyper Nodes.

It uses a diamond proxy architecture to manage modules like access control, node
registration, staking of ICNL tokens, and reward calculation in ICNT tokens.

Users stake non-transferable ICNL NFT tokens to support nodes and earn time-based
rewards defined by a fixed emission curve.

8

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

9

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Low-Medium -

Code readability and clarity Medium-High -

Level of documentation Medium-High The client provided documentation
and diagrams of the protocol.

Test coverage Medium forge coverage reports a test
coverage of 72.89%.

10

Summary of Findings

No Description Severity Status

1 Missing slashing impact handling in LinkRewards
contract gives no disincentive to misbehave after
staking NFTs

Major Acknowledged

2 HyperNodes cannot be removed or deactivated
once registered

Minor Acknowledged

3 No upper bound validation for staking and
unstaking periods

Minor Resolved

4 Incomplete module removal leaves stale selector
hash in Proxy storage

Minor Resolved

5 Fixed reward allocation discrepancy Minor Resolved

6 Incorrect deadline handling in rewards calculation Minor Resolved

7 Partial input validation for HyperNodes registration
and update

Minor Resolved

8 Inconsistent era notification in multiple event
emissions

Minor Resolved

9 Immediate modification of
minLinkStakingPeriod by the admin may
unfairly extend lock duration for existing stakes

Minor Resolved

10 Incorrect annual duration constant may cause
reward and delegation schedule miscalculations

Minor Acknowledged

11 Assumptions in NFT staking logic allow potential
misuse under transfer-enabled scenarios

Minor Acknowledged

12 Unsafe cast from uint256 to uint32 may limit
specific NFT ID staking

Minor Resolved

13 Retroactive rewards curve updates allow
overcompensation for unclaimed staking periods

Minor Resolved

14 Centralization risks Minor Acknowledged

15 Interface documentation inconsistencies may
mislead about reward eligibility and node types

Informational Resolved

16 Redundant contract imports across multiple files Informational Resolved

11

17 Missing public getters for external contract
addresses

Informational Resolved

18 Diamond proxy implementation lacks EIP-2535
compliance

Informational Acknowledged

19 Contracts should implement a two-step ownership
transfer

Informational Resolved

20 Inconsistent initialization event pattern in the
LinkStaking contract

Informational Resolved

21 No maximum limit on reward curve array size Informational Resolved

22 Possible rewards denial-of-service in case that
claimed rewards exceed total rewards

Informational Resolved

23 The getHyperNode view function reverts
unexpectedly

Informational Resolved

24 Miscellaneous comments Informational Resolved

12

Detailed Findings

1. Missing slashing impact handling in LinkRewards contract gives
no disincentive to misbehave after staking NFTs

Severity: Major

The LinkRewards contract defined in src/modules/LinkRewards/LinkRewards.sol
is responsible for tracking and distributing rewards to users staking their tokens in
HyperNodes.

However, the contract lacks logic to account for slashing events, which can occur due to
misbehavior or protocol-defined penalties.

Specifically, the ICN protocol introduces a slashing mechanism in the form of diminishing the
validity period of an NFT, whose owner performed a slashable offence. Current NFT duration
is verified during staking by setting the durationTimes array for all staked linkIds in
src/modules/LinkStaking/LinkStaking.sol:363-372 in _validateLink
function.

However, if slashing occurs after staking, it is not reflected in reward computations. As a
result, stakers continue receiving full-duration rewards despite diminished stake validity,
effectively nullifying slashing as a deterrent and allowing malicious actors to unjustly claim
staking incentives.

Without integrating slashing impact, reward calculations may remain inflated or inaccurate,
distributing unearned tokens to stakers despite the reduced effective stake or validator
performance penalties.

Recommendation

We recommend integrating slashing event awareness into the reward calculation logic by
accounting for the diminished token remaining duration.

Checking for slashing events after staking introduces risk: if the staked NFT is burned,
subsequent duration checks may result in a denial of service for both reward accrual and
unstaking due to reliance on _requireOwned in duration-related functions of ICNLink.

One mitigation approach is to verify NFT ownership before checking for an updated duration.
If the user remains the owner, update the duration; otherwise, treat the NFT as expired.

This adjustment would complicate reward logic, as durations are sorted independently and
their indices do not correspond 1:1 with linkId, necessitating broader changes to the reward
handling mechanism.

Status: Acknowledged

13

The client acknowledges the issue:

“Slashing impact is primarily deferred to the end of the 4-year TTL reward curve. During the
bootstrapping phase of the project we don’t foresee heavy slashing events that will cause an
implication to near term reward calculations. Later stage of the protocol will introduce a
feature to address this.”

2. HyperNodes cannot be removed or deactivated once registered

Severity: Minor

The ICNRegistry contract, defined in src/modules/ICNRegistry/ICNRegistry.sol,
currently lacks the functionality to remove or deactivate registered HyperNodes.

This limitation complicates the lifecycle management of nodes within the network, potentially
leading to an accumulation of non-functional or compromised nodes over time.

Furthermore, the contract does not provide a clear mechanism for stakers to retrieve their
NFTs in a timely manner after a HyperNode ceases operation. This lack of transparency
regarding hypernode status and associated NFT management can create confusion and a
suboptimal experience for stakers.

Recommendation

We recommend implementing functionality to allow for the removal or deactivation of
HyperNodes.

Additionally, we recommend developing a mechanism for stakers to retrieve their NFTs
promptly when a HyperNode stops being active, along with a way for stakers to easily
ascertain the current operational status of HyperNodes they have staked with.

Status: Acknowledged

The client acknowledges the issue:

“During this bootstrap phase of the project, HyperNodes will remain activated to offer
stability during the most volatile periods. The next phase of the project will introduce deeper
lifecycle management.”

3. No upper bound validation for staking and unstaking periods

Severity: Minor

In src/modules/LinkStaking/LinkStaking.sol:61-77 and 100-114, the
functions initializeLinkStaking, setMinLinkStakingPeriod, and
setLinkUnstakingPeriod validate that input periods are greater than zero.

14

However, they do not enforce any upper bound checks.

Consequently, administrators could set extremely long periods for
minLinkStakingPeriod and linkUnstakingPeriod, potentially locking user funds for
excessive periods or making the protocol practically unusable.

Recommendation

We recommend implementing reasonable upper bounds for both parameters.

Consider adding maximum duration checks like require(minLinkStakingPeriod <=
MAX_STAKING_PERIOD) and require(linkUnstakingPeriod <=
MAX_UNSTAKING_PERIOD), with constants defined based on protocol requirements.

Status: Resolved

4. Incomplete module removal leaves stale selector hash in Proxy
storage

Severity: Minor

In src/Proxy/Proxy.sol:93-105, the removeModule function permits the contract
admin to remove a module implementation from the proxy.

However, the function does not clear the associated selectorsHash for the removed
implementation.

This oversight leaves stale data in storage, potentially causing inconsistencies and
complicating state management due to assumptions based on outdated selector mappings.

Recommendation

We recommend updating the removeModule function to explicitly reset the
selectorsHash associated with the removed module implementation.

Status: Resolved

5. Fixed reward allocation discrepancy

Severity: Minor

In src/common/ProtocolConstants.sol:59-60, the
INITIAL_REWARD_DISTRIBUTION constant is calculated as 0.15 * 140,000,000 /
55,000, implementing a 15% allocation of the total rewards pool for fixed rewards.

This contradicts the architecture documentation, which states:

15

"20% of the total 140,000,000 [NFT Rewards Pool] can be paid through a special function
at any time without staking and without waiting period."

Recommendation

We recommend updating either the implementation or the documentation to ensure
consistency.

If 20% is the intended allocation, the constant should be set as 0.20 * 140,000,000 /
55,000.

Status: Resolved

6. Incorrect deadline handling in rewards calculation

Severity: Minor

In src/modules/LinkRewards/LinkRewards.sol:179, the function uses <= to check
if the current timestamp has reached the expiration time.

This implementation prevents users from claiming rewards at the exact moment of expiration.
Best practices (as established in standards like EIP-2612) dictate that operations at the exact
deadline timestamp should be valid.

Recommendation

We recommend replacing the comparison operator from <= to < to allow reward calculations
at the exact expiration time.

Status: Resolved

7. Partial input validation for HyperNodes registration and update

Severity: Minor

The registerHyperNode function in
src/modules/ICNRegistry/ICNRegistry.sol:415–431 allows entities with the
ICN_OPERATOR_ROLE to register new hyper nodes by submitting details such as operator
address, public key and location code.

However, the function lacks sufficient input validation. Specifically, the function does not
enforce uniqueness checks on the publicKey, creating a risk of registering multiple nodes
with identical or conflicting identifiers.

Recommendation

We recommend enhancing input validation in the registerHyperNode function.

16

https://github.com/ethereum/EIPs/blob/71dc97318013bf2ac572ab63fab530ac9ef419ca/EIPS/eip-2612.md?plain=1#L58

Additionally, we recommend enforcing constraints on the uniqueness of publicKey values
across all registered hyper nodes to prevent duplication.

Status: Resolved

8. Inconsistent era notification in multiple event emissions

Severity: Minor

In src/modules/ICNRegistry/ICNRegistry.sol, five functions emit events with era
information that is inconsistent with the client's stated behavior:

● updateReleaseSchedule

● updateClusterMaxPrice

● verifyScalerNode

● removeScalerNode

Each function emits an event that includes _getEraManagerCurrentEra() + 1,
indicating changes take effect in the next era (E+1).

However, according to the client:

"Era related changes happening during the current Era 'E' will begin to be applied in the
Protocol in the Era 'E+2'."

This discrepancy could cause integration issues for systems or users monitoring these events,
as they would incorrectly assume changes become active in era E+1 rather than E+2.

Recommendation

We recommend updating all affected event emissions to include the correct era when
changes take effect, ensuring consistency between event data and actual system behavior.

Status: Resolved

9. Immediate modification of minLinkStakingPeriod by the
admin may unfairly extend lock duration for existing stakes

Severity: Minor

In src/modules/LinkStaking/LinkStaking.sol:101–107, the
DEFAULT_ADMIN_ROLE possesses the authority to update the minLinkStakingPeriod.

17

However, any changes to this parameter are applied instantly and retroactively affect all
existing stakes. This behavior introduces a fairness concern, as stakers may find their tokens
locked for longer durations than originally agreed upon.

Such unexpected extensions can undermine user trust and violate the principle of
immutability typically expected in staking mechanisms.

Recommendation

We recommend implementing a mechanism that ensures changes to
minLinkStakingPeriod only apply to new stakes created after the update.

Status: Resolved

10. Incorrect annual duration constant may cause reward and
delegation schedule miscalculations

Severity: Minor

In src/common/ProtocolConstants.sol:10, the ONE_YEAR constant is defined as 12
* ONE_MONTH.

However, ONE_MONTH is statically set to 30 days, resulting in a ONE_YEAR value equivalent
to 360 days instead of the standard 365.

This discrepancy leads to inaccuracies in time-dependent protocol logic, specifically
impacting hardware provider delegation durations and the release schedules used for
capacity-based reward distribution.

Recommendation

We recommend changing ONE_YEAR to 365.25 days to accurately measure years,
accounting for leap years.

Status: Acknowledged

The client acknowledges the issue:

“The protocol uses a standard measure of 1 month = 30 days, and the largest timescale is
denominated in months. The usage of 1 year is as an alias for simplification of `12 months`
where months remain the centrally defined constant of 30 days.”

11. Assumptions in NFT staking logic allow potential misuse under
transfer-enabled scenarios

Severity: Minor

18

In src/modules/LinkStaking/LinkStaking.sol:363–364, LINK NFTs are verified
for ownership at the time of staking. The protocol assumes NFTs remain under the user’s
control throughout the staking period, as LINK NFT transfers are disabled by default.

However, this design implicitly relies on the immutability of NFT ownership. Since the ICN
LINK token contract allows the admin to enable transfers, if it is enabled in the future, it would
be possible to flashloan a LINK NFT and stake it multiple times, bypassing intended staking
limitations.

Additionally, even with transfers disabled, it is technically feasible to transfer a LINK NFT to
the zero address due to the burn logic using similar transfer semantics. This edge case affects
the correctness of the LinkStaking.isLinkStaked function, potentially leading to
inconsistencies in off-chain clients or external smart contracts that depend on this status
indicator.

Recommendation

We recommend, for the current stage, that the staking contract verify whether LINK NFT
transfers are enabled and explicitly fail if they are.

If transfer functionality is activated in the future, the staking mechanism must be restructured
to handle transferable NFTs safely, potentially by transferring them to the INCP contract for
escrow to maintain control and prevent misuse.

Status: Acknowledged

The client acknowledges the issue:

“Transfers will remain disabled at the current version of the protocol. Transfers enabled at a
later date will occur with a simultaneous feature change to alleviate any unintended staking
behaviour as a result.”

12. Unsafe cast from uint256 to uint32 may limit specific NFT ID
staking

Severity: Minor

The protocol employs storage optimization by packing up to eight NFT IDs into a single
storage slot using low-level byte manipulation via ArraysLib.store32, invoked in
src/modules/LinkStaking/LinkStaking.sol:319.

This method assumes that each linkId fits within 32 bits, but performs an unsafe cast from
uint256 to uint32 without enforcing bounds. If a linkId exceeds the uint32 limit, it
causes overflow and spills into adjacent 32-bit segments, corrupting the packed data
structure.

19

This could result in an unstaked linkId being permanently marked as staked, undermining
the integrity of the staking system.

While the codebase references 55,000 NFTs, there are no enforced upper bounds on token
IDs. The ICNLink.batchSafeMintWithIds function, accessible via the MINTER role,
permits arbitrary high-value linkId minting without restriction, increasing the risk of such
overflow conditions.

Recommendation

We recommend enforcing a constraint that each linkId is strictly less than
type(uint32).max during the staking process.

Status: Resolved

13. Retroactive rewards curve updates allow overcompensation for
unclaimed staking periods

Severity: Minor

The ICN protocol employs a progressive rewards curve to define the monthly distribution
percentages of total rewards to NFT stakers. This curve is implemented as an array in
src/modules/LinkRewards/LinkRewards.sol:51–59, with logic permitting updates
to the curve while enforcing that new monthly percentages are not lower than the existing
values.

However, the contract lacks safeguards against retroactive changes affecting unclaimed
rewards. If a user delays claiming rewards, and the curve is updated to allocate higher
percentages for past months, they can retroactively receive more than they were originally
eligible for.

This undermines the fairness of the reward mechanism and may lead to excessive reward
distribution inconsistent with the protocol’s intended schedule.

Recommendation

We recommend introducing logic to freeze reward calculations for past periods at the time
they elapse. This could be achieved by snapshotting the rewards curve monthly or
maintaining a historical mapping of curve states per reward period.

Status: Resolved

14. Centralization risks

Severity: Minor

20

The smart contracts in scope are designed to rely on a trusted party to perform privileged
operations.

Consequently, the overall security of the system depends on the trusted parties, particularly in
relation to key management and operations.

Specifically:

● Admin role has complete control over all module upgrades via addModule and
removeModule, while renounceAdminRole could permanently disable the
contract if called.

● The ICN_OPERATOR_ROLE controls critical economic parameters, infrastructure
registration, node verification, and reward mechanisms without safeguards like
timelocks or multi-signature requirements.

Recommendation

We recommend enforcing strict key management, the usage of multi-signature accounts and
evaluating the removal of the aforementioned privileged operations.

Status: Acknowledged

The client acknowledges the issue:

“This will be operating only during the near term bootstrapping phase of the protocol to
ensure agility to respond to potential bugs at this critical time. At a later stage, the protocol
will be transitioned to a governance-driven approach where all admin functions must pass
governance votes.”

15. Interface documentation inconsistencies may mislead about
reward eligibility and node types

Severity: Informational

Two separate interface documentation inconsistencies may lead to developer confusion and
misinterpretation of protocol behavior:

● In src/modules/LinkRewards/interfaces/ILinkRewards.sol:45–46,
the claimFixedRewards function is documented as involving a 90-day waiting
period before rewards can be claimed.

However, the actual implementation in the LinkRewards contract allows for immediate
reward transfer via reserve.withdraw. This aligns with external documentation
stating that “20% of the total 140,000,000 can be paid through a special function at
any time without staking and without waiting period” but contradicts the function
comment.

21

● In
src/modules/LinkStaking/interfaces/ILinkStaking.sol:128–127,
the NodeType enum defines values SN and HN.

However, comments throughout the interface mistakenly refer to node types as “HN
or HP” introducing ambiguity about supported node classifications. These
discrepancies undermine clarity and could mislead developers or auditors integrating
or analyzing the protocol.

● In src/modules/LinkRewards/interfaces/ILinkRewards.sol:52, the
comment states that reward curve values are expressed with four decimal places (e.g.,
2500 represents 0.25 or 25%). This contradicts the implementation, where values
such as 1e18 are used directly in test scenarios, and no scaling logic is applied during
reward calculation. The raw value is multiplied by the NFT count, and the resulting
ICNT token amount is directly transferred, implying full precision rather than fixed
decimal representation.

Recommendation

We recommend thoroughly reviewing and correcting the interface documentation to reflect
the actual implementation logic and valid enum values.

Status: Resolved

16. Redundant contract imports across multiple files

Severity: Informational

In src/modules/ExternalContractManager/ExternalContractManager.sol
and src/modules/LinkStaking/LinkStaking.sol, there are redundant import
statements which decrease code readability and maintainability.

Specifically, in ExternalContractManager, the interfaces IICNLink, IERC20, and the
contract types ReservePool and Treasury are imported directly, despite already being
imported in ExternalContractManagerStorage.

Similarly, in LinkStaking, several interfaces and contracts are imported multiple times
through different dependency paths.

Recommendation

We recommend removing redundant imports to improve code readability and potentially
reduce deployment gas costs.

Status: Resolved

22

17. Missing public getters for external contract addresses

Severity: Informational

In src/modules/ExternalContractManager/ExternalContractManager.sol,
the contract stores critical addresses like icnLink, icnToken, reserve, and treasury,
but does not provide public getter functions to retrieve these values.

While the contract provides setters for reserve and treasury addresses and a getter for
version, the lack of getters for external contract addresses reduces transparency.

Recommendation

We recommend adding public getter functions for all stored contract addresses to improve
observability. This would allow users, auditors, and integrating systems to verify which
external contracts are being used easily.

Status: Resolved

18. Diamond proxy implementation lacks EIP-2535 compliance

Severity: Informational

The Proxy contract in src/Proxy/Proxy.sol implements a customized and partial version
of the Diamond proxy pattern without leveraging any established, battle-tested libraries.

Specifically, it omits all public view functions defined in EIP-2535, resulting in non-compliance
with the standard.

This deviation impairs compatibility with EIP-2535-dependent infrastructure, including
off-chain components and blockchain indexers, potentially disrupting automated interactions
and introducing blind spots in system observability.

Recommendation

We recommend evaluating the usage of a battle-tested library and fully supporting the
EIP-2535 standard to ensure compliance and enable proper interaction by off-chain systems.

Status: Acknowledged

The client acknowledges the issue:

“Strict compliance with EIP-2535 is not a key design requirement. We have pursued a minimal
implementation that enables a modular approach while reducing complexity as much as
possible to minimize potential attack surface.”

23

19. Contracts should implement a two-step ownership transfer

Severity: Informational

The contracts within the scope of this audit allow the current owner to execute a one-step
ownership transfer. While this is common practice, it presents a risk for the ownership of the
contract to become lost if the owner transfers ownership to an incorrect address.

A two-step ownership transfer will allow the current owner to propose a new owner, and then
the account that is proposed as the new owner may call a function that will allow them to
claim ownership and actually execute the config update.

Recommendation

We recommend implementing a two-step ownership transfer. The flow can be as follows:

1. The current owner proposes a new owner address that is validated and lowercased.

2. The new owner account claims ownership, which applies the configuration changes.

Status: Resolved

20. Inconsistent initialization event pattern in the LinkStaking
contract

Severity: Informational

In src/modules/LinkStaking/LinkStaking.sol:75–76, the
initializeLinkStaking function emits discrete events for individual parameters
(MinLinkStakingPeriodSet and LinkUnstakingPeriodSet).

However, it does not emit a consolidated initialization event that encapsulates the full
initialization context. This diverges from the approach used in other modules, such as
LinkRewards, which emit a single, comprehensive initialization event for greater clarity and
traceability.

Recommendation

We recommend introducing a dedicated event that aggregates all relevant initialization
parameters.

Status: Resolved

21. No maximum limit on reward curve array size

Severity: Informational

24

In src/modules/LinkRewards/LinkRewards.sol:307–320, the
_setRewardCurve function accepts and processes a dynamic array representing monthly
reward percentages.

While the intended use case suggests approximately 48 elements to represent a four-year
curve, there is no explicit upper bound enforced on the array length.

This omission theoretically permits submission of arbitrarily large arrays, which could result in
excessive gas consumption and potentially contribute to block gas limit exhaustion.

Although this is currently mitigated by the Base network’s 120 million gas limit per block, the
lack of an enforced constraint introduces unnecessary risk.

Recommendation

We recommend adding an explicit maximum length check for the _rewardsCurve array to
formalize the implicit 48-month limitation.

Status: Resolved

22. Possible rewards denial-of-service in case that claimed
rewards exceed total rewards

Severity: Informational

In src/modules/LinkRewards/LinkRewards.sol:343–344, the protocol calculates
accrued rewards for NFT staking by subtracting claimedRewards from
totalCumRewards, returning the difference as the per-NFT reward.

This logic functions correctly under the current implementation, where claimedRewards is
always less than or equal to totalCumRewards. However, the design does not guard
against future changes that could disrupt this assumption. If updated logic results in
claimedRewards exceeding totalCumRewards for a particular stake, the subtraction will
underflow, causing a transaction revert.

Since this calculation is also performed during the unstaking process, such a condition could
create a denial of service, preventing users from withdrawing their staked NFTs.

Recommendation

We recommend adding safety measures to return 0 in case that claimedRewards is major
than totalCumRewards.

Status: Resolved

25

23. The getHyperNode view function reverts unexpectedly

Severity: Informational

In src/modules/ICNRegistry/ICNRegistry.sol:445–449, the getHyperNode
function is declared as external and is intended for use by other contracts and off-chain
clients.

However, it reverts if the specified HyperNode does not exist. This behavior complicates
integration for external protocols, which must perform additional error handling to
differentiate between a non-existent node.

Recommendation

We recommend modifying the function to return a tuple containing the HyperNode struct
and a bool isRegistered flag.

Status: Resolved

24. Miscellaneous comments

Severity: Informational

Miscellaneous recommendations can be found below.

Recommendation

The following are some recommendations to improve the overall code quality and readability:

● Use != 0 instead of > 0 for non-zero checks to save gas across the multiple
instances where this pattern appears.

● In src/modules/LinkStaking/interfaces/ILinkStaking.sol:63-65,
the comment on initializeLinkStaking incorrectly states it "Can only be called
by admin" while the implementation restricts access with onlySelf. We recommend
updating the interface comment to accurately reflect that the function can only be
called internally by the contract itself.

● In src/modules/LinkStaking/interfaces/ILinkStaking.sol:124, add a
require statement to validate that the sortedLinkIds array is not empty in the
claimFixedRewards function to prevent confusing out-of-bounds errors.

● In src/modules/LinkStaking/LinkStaking.sol:176-180, there are two
storage reads of unstakingRequestEra, which can be simplified to one storage
read by caching the value early.

● In src/modules/LinkStaking/LinkStaking.sol:163-165, currentEra
+ $.linkUnstakingPeriod is stored as linkStake.unstakingRequestEra
and then recalculated again in the event. Using

26

linkStake.unstakingRequestEra when emitting the
LinkUnstakingRequested event would save SLOAD operation.

Status: Resolved

27

	ICN Protocol
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​Missing slashing impact handling in LinkRewards contract gives no disincentive to misbehave after staking NFTs
	2.​HyperNodes cannot be removed or deactivated once registered
	3.​No upper bound validation for staking and unstaking periods
	4.​Incomplete module removal leaves stale selector hash in Proxy storage
	5.​Fixed reward allocation discrepancy
	6.​Incorrect deadline handling in rewards calculation
	7.​Partial input validation for HyperNodes registration and update
	8.​ Inconsistent era notification in multiple event emissions
	9.​ Immediate modification of minLinkStakingPeriod by the admin may unfairly extend lock duration for existing stakes
	10.​ Incorrect annual duration constant may cause reward and delegation schedule miscalculations
	11.​Assumptions in NFT staking logic allow potential misuse under transfer-enabled scenarios
	12.​ Unsafe cast from uint256 to uint32 may limit specific NFT ID staking
	13.​ Retroactive rewards curve updates allow overcompensation for unclaimed staking periods
	14.​ Centralization risks
	15.​ Interface documentation inconsistencies may mislead about reward eligibility and node types
	16.​ Redundant contract imports across multiple files
	17.​ Missing public getters for external contract addresses
	18.​ Diamond proxy implementation lacks EIP-2535 compliance
	19.​ Contracts should implement a two-step ownership transfer
	20.​Inconsistent initialization event pattern in the LinkStaking contract
	21.​ No maximum limit on reward curve array size
	22.​Possible rewards denial-of-service in case that claimed rewards exceed total rewards
	23.​The getHyperNode view function reverts unexpectedly
	24.​ Miscellaneous comments

