
Impossible Cloud
Network ProtocolSecurity Review

Cantina Managed review by:
Noah Marconi, Lead Security Researcher
Hash, Security Researcher

June 12, 2025

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 Not updating nodeIndex when removing scalar nodes can cause future removals torevert . 43.1.2 Users can unstake a single link token several times making other link tokens to benon unstakeable . 43.1.3 Node removal will cause delegators to loose their assets and rewards 53.1.4 Commitment end is not handled in _processAddCollateralFromNodeRewards causingunderflow and stuck assets . 53.1.5 Incorrect nodeId is used to update existing delegation inside delegateUnclaime-

dRewards function . 53.2 Medium Risk . 63.2.1 Late delegation check causes collateral redirection to be skipped 63.2.2 Slippage can cause user's to pay more for booking capacity than they are willing . . . 63.2.3 Lack of validation for nodeRewardShare allows amalicious node to DoS delegator with-drawals . 73.2.4 Link associated collateral is computed incorrectly inside getScalerNodeTotalCollat-
eral . 73.2.5 Performing reward curve updation from (currentMonth + 1) can cause some portionof rewards to be unclaimable . 83.2.6 Not capping t2 to basis + ProtocolConstants.RELEASE_SCHEDULE_DURATION willcause lost rewards due to negative value addition . 93.3 Low Risk . 113.3.1 regionId based deposits overwrite previous amount . 113.3.2 initiateHpRewardsClaim should always be manually invoked before node removalin-order to not loose rewards . 113.3.3 Slashing is un-enforceable during final moments of commitment due to instant col-lateral withdrawal . 123.3.4 Booking can get overwritten in case the reservation price was 0 123.3.5 Used summation formula omits the first timestamp and hence its reward 133.3.6 unclaimedHpRewards doesn't handle the case of 0 delegations causing incorrect re-ward reporting . 133.3.7 Users can DoS future node bookings by keeping < minBookingPeriod leftover 143.3.8 Excessively high capacity permitted when marketAdjustmentFactor or minCollater-
alPercent are at or near 0 . 143.3.9 Separately calculating xSlope causes lower precision and possible revert due torounding error . 153.4 Gas Optimization . 153.4.1 Avoid duplicate sloads by using the expression's evaluated value 153.4.2 The overloaded updateModule (without initdata argument) applies the onlyAdminmodifier twice . 173.4.3 May use unchecked math to save small amounts of gas 173.4.4 Array elements deleted twice . 173.4.5 Revert early to save gas on storage write in reverting case 183.5 Informational . 183.5.1 Enforce a reasonable maximum on minWaitPeriodForClaimsWithdrawal to preventadmin error . 183.5.2 Node registration reservationPrice is a maximum price not a minimum 183.5.3 getCluster function doesn't return hwClass . 193.5.4 registerScalerNode doesn't validate hwClass . 193.5.5 removeScalerNode sets the timestamp of nil regionId 19

1

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary
ICN Protocol is a decentralized infrastructure network, providing composable hardware for permission-less operation of internet and web3 services.
From May 2nd to May 17th the Cantina team conducted a review of icn-protocol on commit hash90a54a01. The team identified a total of 30 issues:

Issues Found
Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 5 5 0
Medium Risk 6 6 0
Low Risk 9 6 3
Gas Optimizations 5 4 1
Informational 5 4 1
Total 30 25 5

The Cantina Managed team reviewed icn-protocol holistically on commit hash 6f3fbdbf and concludedthat all findings were addressed and no new issues were identified.

3

https://github.com/ICN-Protocol/icn-protocol
https://github.com/ICN-Protocol/icn-protocol/commit/90a54a01fe453cd463f3dc77af597fd14f555623
https://github.com/ICN-Protocol/icn-protocol
https://github.com/ICN-Protocol/icn-protocol/commit/6f3fbdbf5d67a41618c653402c7dee061b95545c

3 Findings
3.1 High Risk
3.1.1 Not updating nodeIndex when removing scalar nodes can cause future removals to revert
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: After moving the last element of the array to its new index the scalerNodeIndexesmappingis not updated to reflect the new position.
function removeScalerNode(uint256 scalerNodeId) external override whenNotPaused {

// ...

uint256 nodeIndex = ds.clusters[clusterId].scalerNodeIndexes[scalerNodeId];
ds.clusters[clusterId].scalerNodeIds[nodeIndex] =

ds.clusters[clusterId].scalerNodeIds[ds.clusters[clusterId].scalerNodeIds.length - 1];
ds.clusters[clusterId].scalerNodeIds.pop();

This can cause removals to revert (causing stuck collateral) or clear another another node from the
scalerNodeIds array.
Recommendation: Update the index of the moved node to newIndex.
ICN Protocol: Fixed in PR 188.
Cantina Managed: Fix verified.
3.1.2 Users can unstake a single link token several times making other link tokens to be nonunstakeable
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: In case there are pending reward claims, a link stake is marked as unstaked rather thanbeing removed. Such stake is already unstaked and should not be allowed to re-unstake.
function completeUnstaking(NodeType nodeType, uint256 stakeIndex) external override whenNotPaused {

// ...

if (getLinkRewardsStorage().rewards[linkStake.stakeId].claims.length == 0) {
if (stakeIndex != stakesCount - 1) {

$.linksStakes[msgSender][nodeType][stakeIndex] = $.linksStakes[msgSender][nodeType][stakesCount - 1];
}
$.linksStakes[msgSender][nodeType].pop();

} else {
linkStake.unstaked = true;

}

But the kept validations in completeUnstaking doesn't enforce this and allows an unstaked link to be re-unstaked unlimited number of times. This will excessively reduce the stakers count and cause futureuntakings to revert due to underflow.
if (nodeType == NodeType.HN) {

$.hyperNodes[nodeId].stakers -= linksCount;
} else {

$.scalerNodes[nodeId].stakers -= linksCount;
}

Recommendation: in case linkStake.unstaked == true, revert in the completeUnstaking function.
ICN Protocol: Fixed in commit 74ac99b7.
Cantina Managed: Fix verified.

4

https://github.com/ICN-Protocol/icn-protocol/pull/188
https://github.com/ICN-Protocol/icn-protocol/commit/74ac99b751e3310ff7c30c181ab2714f0151d49d

3.1.3 Node removal will cause delegators to loose their assets and rewards
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: The settleHpRewardsDelegatorShare functionwhich is internally called by both undelegate-
Collateral and initiateDelegationRewardsClaimwill revert incase the status of the node is not ScalerN-
odeStatus.Validated.
function settleHpRewardsDelegatorShare(uint256 _scalerNodeId) external override onlySelf {

HPRewardsStorageData storage hs = getHPRewardsStorage();
ICNRegistryStorageData storage rs = getICNRegistryStorage();
ScalerNode storage scalerNode = rs.scalerNodes[_scalerNodeId];
require(scalerNode.status == ScalerNodeStatus.Validated, IICNRegistryErrors.InvalidScalerNode()); // <<<

This is flawed because nodes can be removed as soon as their commitment ends (even when there aredelegated assets and pending delegator rewards) and its status will change to ScalerNodeStatus.None.Hence the delegators will be unable to claim their assets and rewards.
Recommendation: Create and allow a new status similar to ScalerNodeStatus.Removed rather than re-verting if status != ScalerNodeStatus.Validated.
ICN Protocol: Fixed in PR 189.
Cantina Managed: Fix verified.
3.1.4 Commitment end is not handled in _processAddCollateralFromNodeRewards causing under-flow and stuck assets
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: Inside _processAddCollateralFromNodeRewards, commitmentRemaining is alwayscalculated as scalerNode.commitmentStart + scalerNode.commitmentDuration - block.timestamp.
function _processAddCollateralFromNodeRewards(

uint256 _scalerNodeId,
uint256 _nodeCollateralToBeAdded,
uint256 _networkCollateralToBeAdded

) internal {
// ...

uint256 commitmentRemaining = scalerNode.commitmentStart + scalerNode.commitmentDuration - block.timestamp;

This will cause the execution to revert in case block.timestamp is > scalerNode.commitmentStart +
scalerNode.commitmentDuration. Since _processAddCollateralFromNodeRewards is invoked internallywhen removing delegator assets and node/delegator rewards, these actions can't be performed causingassets to be lost.
Recommendation: Explicitly set commitmentRemaining to 0 incase block.timestamp is >
scalerNode.commitmentStart + scalerNode.commitmentDuration.
ICN Protocol: Fixed in PR 187.
Cantina Managed: Fix verified.
3.1.5 Incorrect nodeId is used to update existing delegation inside delegateUnclaimedRewards func-tion
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: Inside delegateUnclaimedRewards, the to-be-delegated nodeId is used to update the existingdelegation as well (instead of using nodeDelegation.nodeId). This messes up the existing delegation sincethere is no real connection between the existing delegation and the to-be-delegated nodeId and can causeexcess rewards to be gained by the user.

5

https://github.com/ICN-Protocol/icn-protocol/pull/189
https://github.com/ICN-Protocol/icn-protocol/pull/187

function delegateUnclaimedRewards(
uint256 _lockedDelegationIndex,
uint256 _nodeDelegationIndex,
uint256 _nodeId,
uint256 _lockupDurationInSeconds

) external override onlyVerifiedNode(_nodeId) validLockupDuration(_lockupDurationInSeconds) whenNotPaused {
uint256 baseIncentiveAccumulation = _commitDelegatorIncentiveRewards();
IHPRewards(address(this)).settleHpRewardsDelegatorShare(_nodeId);

// ...

(UserDelegation storage userDelegation, NodeDelegation storage nodeDelegation) =
_getUserNodeDelegation(msg.sender, _lockedDelegationIndex, _nodeDelegationIndex);

Recommendation: Use nodeDelegation.nodeId in-order to update the existing delegation.
ICN Protocol: Fixed in PR 186.
Cantina Managed: Fix verified.
3.2 Medium Risk
3.2.1 Late delegation check causes collateral redirection to be skipped
Severity: Medium Risk
Context: HPRewards.sol#L74-L86
Description: The HPRewards.initiateHpRewardsClaim function subtracts the delegatorShare from un-
claimedRewards before determining how many rewards should be redirected to collateral:
uint256 delegatorShare = (unclaimedRewards * scalerNode.nodeRewardShare) / M;
unclaimedRewards -= delegatorShare;

// ...

(unclaimedRewards, nodeCollateralToBeAdded, networkCollateralToBeAdded) =
_calculateNodeRewardsLeftAfterRedirection(_scalerNodeId, unclaimedRewards);

unclaimedRewards += scalerNodeData.rewardDebt;

// Credit the delegator rewards
{

bool hasDelegation = _addNodeRewardShareForDelegators(_scalerNodeId, delegatorShare);
if (!hasDelegation) {

// If there is no delegation, the delegator share is 0
unclaimedRewards += delegatorShare;
delegatorShare = 0;

}
}

In the case where there is no delegation the delegatorShare is added back to unclaimedRewards to beclaimed after the claimUnlockTimestamp and are not used for collateral as required by the Collateral
Requirements and Rewards Redirection.
For any periodwhere there are no delegators, a nodemay redirect all of its rewards to delegators, allowingthem to circumvent any redirection of rewards for collateral purposes.
Recommendation: Perform the delegation check prior to calculating reward redirection amounts.
ICN Protocol: Fixed in PR 189.
Cantina Managed: Fix verified.
3.2.2 Slippage can cause user's to pay more for booking capacity than they are willing
Severity: Medium Risk
Context: (No context files were provided by the reviewer)

6

https://github.com/ICN-Protocol/icn-protocol/pull/186
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/HPRewards/HPRewards.sol#L74-L86
https://github.com/ICN-Protocol/icn-protocol/pull/189

Description: The price to book capacity can change in between a user signing the transaction and itsexecution due to changes in reservationPrice, maxPrice or marketAdjustmentFactor. This can causeusers to spend more than what they had expected when signing the transaction.
function bookCapacity(uint256 capacity, uint256 period, string calldata clusterId) external override

whenNotPaused {↪→

// ...

uint256 bookingPrice;
for (uint256 i; i < rs.clusters[clusterId].scalerNodeIds.length; ++i) {

ICNRegistryStorage.ScalerNode storage scalerNode = rs.scalerNodes[rs.clusters[clusterId].scalerNodeIds[i]];
if (

capacity == scalerNode.totalCapacity && scalerNode.utilizedCapacity == 0
&& block.timestamp + period <= scalerNode.commitmentStart + scalerNode.commitmentDuration

) {
bookedNodeId = rs.clusters[clusterId].scalerNodeIds[i];

bookingPrice = _transferBookingPrice(capacity, period, clusterId, scalerNode.reservationPrice);

Recommendation: Add a parameter to limit the maximum amount that can be spend.
ICN Protocol: Fixed in PR 204.
Cantina Managed: Fix verified.
3.2.3 Lack of validation for nodeRewardShare allows amalicious node to DoS delegatorwithdrawals
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: nodeRewardShare can be set by a node and is not validated to be <= 100% (ie. the conceptualmaximum). This allows a node to set nodeRewardShare to arbitrarily high values like uint.max which willcause overflow in multiple functions including settleHpRewardsDelegatorSharewhich will disable delega-tors from withdrawing their collateral.
function updateScalerNodeNodeRewardShare(uint256 scalerNodeId, uint256 nodeRewardShare)

external
override
onlyHPAndValidatedScalerNode(scalerNodeId)
whenNotPaused

{
ICNRegistryStorageData storage $ = getICNRegistryStorage();
ScalerNode storage scalerNode = $.scalerNodes[scalerNodeId];

// Settle the HP rewards delegator share for the scaler node, so that post-update
// the new rewards are distributed according to the new node reward share
IHPRewards(address(this)).settleHpRewardsDelegatorShare(scalerNodeId);

scalerNode.nodeRewardShare = nodeRewardShare;
emit ScalerNodeNodeRewardShareUpdated(scalerNodeId, nodeRewardShare);

Recommendation: Limit nodeRewardShare to 100%.
ICN Protocol: Fixed in commit ed611117.
Cantina Managed: Fix verified.
3.2.4 Link associated collateral is computed incorrectly inside getScalerNodeTotalCollateral

Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: The link associated collateral should actually be the pending unemitted rewards.But in the implementation, this is calculated as getNftCumCurvePoint(endPoint, startPoint)with (usually) startPoint == block.timestamp and endPoint == es.icnLink.activationTime() +
es.icnLink.durationTime().

7

https://github.com/ICN-Protocol/icn-protocol/pull/204
https://github.com/ICN-Protocol/icn-protocol/commit/ed611117767c843a9c338488f311eb8513fee248

function getScalerNodeTotalCollateral(uint256 scalerNodeId)
external
view
override
returns (uint256 totalCollateral, uint256 nodeCollateral, uint256 networkCollateral)

{

// ...

uint256 endPoint = es.icnLink.activationTime() + es.icnLink.durationTime();
LinkRewardsStorageData storage ds = getLinkRewardsStorage();
uint256 startPoint = Math.max(ds.rewardsActivationTs, block.timestamp);

if (endPoint > startPoint) {
uint256 totalCumReward = ILinkRewards(address(this)).getNftCumCurvePoint(endPoint, startPoint);
uint256 potentialRewards =

stakers * (totalCumReward * ProtocolConstants.TOTAL_NFT_REWARDS_POOL) /
ProtocolConstants.TOTAL_NFT_TOKENS;↪→

networkCollateral += potentialRewards;

This is incorrect as getNftCumCurvePoint will always begin from index 0 of the curve rather than the re-maining unemitted portion.
eg:
rewardCurve = [10,90,95,100]
time delta b/w each index = 10s

Now after 20s, 90% of the entire rewards have been claimed but the calculation above will still attribute90% to node's collateral instead of considering the actual remaining unclaimed amount ie. 10%.
Recommendation: Subtract the already emitted fraction from the total fraction.
uint256 endPoint = es.icnLink.activationTime() + es.icnLink.durationTime();
LinkRewardsStorageData storage ds = getLinkRewardsStorage();
uint256 startPoint = Math.max(ds.rewardsActivationTs, block.timestamp);

uint basePoint = ds.rewardsActivationTs;

if (endPoint > startPoint) {
uint refRewards = ILinkRewards(address(this)).getNftCumCurvePoint(startPoint,basePoint);
uint totalRewards = ILinkRewards(address(this)).getNftCumCurvePoint(endPoint,basePoint);

uint256 totalCumReward = totalRewards - refRewards;
// ...

ICN Protocol: Fixed in PR 197.
Cantina Managed: Fix verified.
3.2.5 Performing reward curve updation from (currentMonth + 1) can cause some portion of re-wards to be unclaimable
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: Currently reward curve updations are allowed to be performed starting from
(block.timestamp - $.rewardsActivationTs) / ProtocolConstants.ONE_MONTH + 1. Although thisavoid changing the value of the currently active month, it still allows changes to activeMonth + 1.

8

https://github.com/ICN-Protocol/icn-protocol/pull/197

function updateRewardsCurve(uint256[] calldata _rewardsCurve) external override onlyRole(ICN_OPERATOR_ROLE) {
LinkRewardsStorageData storage $ = getLinkRewardsStorage();
require($.rewardsCurve.length != 0, RewardCurveNotSet());
uint256 currentIndex = (block.timestamp - $.rewardsActivationTs) / ProtocolConstants.ONE_MONTH + 1;
require($.rewardsCurve.length == currentIndex + _rewardsCurve.length, LinkRewardsInvalidParams());

// ...

for (uint256 i = 0; i < _rewardsCurve.length - 2; i++) {
require(

(i == 0 ? _rewardsCurve[i] != 0 : _rewardsCurve[i] >= _rewardsCurve[i - 1])
&& ($.rewardsCurve[currentIndex + i] <= _rewardsCurve[i]),

InvalidRewardCurveValue()
);
$.rewardsCurve[currentIndex + i] = _rewardsCurve[i];

}

emit RewardCurveUpdated($.rewardsCurve, block.timestamp);
}

This can cause some portion of rewards to be unclaimable by the users as the extrapolation for referencereward performed inside getNftCumCurvePoint will assume that the new increased amount has beenclaimed.
function getPendingRewards(address claimer, uint256 stakeIndex, ILinkStakingStorage.NodeType nodeType)

public
view
override
returns (uint256 pendingRewards)

{

// ...

uint256 referenceTs = latestClaimTs != 0 ? latestClaimTs : Math.max(stakeStartTs, rewardsActivationTs);
uint256 refRewards = getNftCumCurvePoint(referenceTs, rewardsActivationTs);

function getNftCumCurvePoint(uint256 endPoint, uint256 startPoint) public view override returns (uint256) {
// ...

uint256 rt0 = ds.rewardsCurve[index];
uint256 rt1 = ds.rewardsCurve[index + 1];
return rt0 + ((rt1 - rt0) * remainder) / ProtocolConstants.ONE_MONTH;

}

eg:
reward curve = [5,10,20,30,90,100]
time delta b/w each index == 10s
lastClaimedTs == currentTimestamp = 29 seconds
hence currentIndex = 2
claimed rewards == 29% of total
now updation of reward curve occurs,
new reward curve = [5,10,20,90,95,100]
now users will only be able to claim (100 - (20 + 0.9 * 70)) == 17% more, making their total claimable to 46%

Recommendation: Only perform updations from currentIndex + 2.
ICN Protocol: Fixed in PR 199.
Cantina Managed: Fix verified.
3.2.6 Not capping t2 to basis + ProtocolConstants.RELEASE_SCHEDULE_DURATION will cause lost re-wards due to negative value addition
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: The reward in the linear decreasing region will drop to 0 after RELEASE_SCHEDULE_DURATION.Any timestamp after that will result in negative values and hence the rewards calculation should limitthe timestamp to basis/startingPoint + RELEASE_SCHEDULE_DURATION. But this is not enforced in theimplementation causing negative value addition to take places thereby decreasing the rewards.

9

https://github.com/ICN-Protocol/icn-protocol/pull/199

function _calculateAggregateBootstrapReleaseInLinearDecreaseRegion(
uint256 _t1,
uint256 _t2,
uint256 _releaseSchedule,
uint256 _marketAdjustmentFactor

) internal pure returns (uint256) {
int256 value = int256(_t2 - _t1) * IM;
value -= ((int256(_t2) * int256(_t2 + 1) - int256(_t1) * int256(_t1 + 1)) * IM)

/ (2 * int256(ProtocolConstants.RELEASE_SCHEDULE_DURATION));
value = value < 0 ? int256(0) : value;
return (uint256(value) * _marketAdjustmentFactor * _releaseSchedule) / M;

}

Apply the following diff and run forge test --mt testPOC_rewardsNegativeCancelOutPositive -vv. Itcan be seen that the rewardAmount peaks at t == 10, decreases afterwards and drops to 0 at t == 20.
diff --git a/src/modules/HPRewards/HPRewards.sol b/src/modules/HPRewards/HPRewards.sol
index f851765..72f5348 100644
--- a/src/modules/HPRewards/HPRewards.sol
+++ b/src/modules/HPRewards/HPRewards.sol
@@ -580,4 +580,15 @@ contract HPRewards is

value = value < 0 ? int256(0) : value;
return (uint256(value) * _marketAdjustmentFactor * _releaseSchedule) / M;

}
+
+ function forTesting_calculateAggregateBootstrapReleaseInLinearDecreaseRegion(uint256 _t1,
+ uint256 _t2,
+ uint256 _releaseSchedule,
+ uint256 _marketAdjustmentFactor,uint totalDuration) public returns (uint256){
+ int256 value = int256(_t2 - _t1) * IM;
+ value -= ((int256(_t2) * int256(_t2 + 1) - int256(_t1) * int256(_t1 + 1)) * IM)
+ / (2 * int256(totalDuration));
+ value = value < 0 ? int256(0) : value;
+ return (uint256(value) * _marketAdjustmentFactor * _releaseSchedule) / M;
+ }
}

diff --git a/src/modules/HPRewards/interfaces/IHPRewards.sol b/src/modules/HPRewards/interfaces/IHPRewards.sol
index 6317080..264c644 100644
--- a/src/modules/HPRewards/interfaces/IHPRewards.sol
+++ b/src/modules/HPRewards/interfaces/IHPRewards.sol
@@ -172,4 +172,12 @@ interface IHPRewards is IHPRewardsErrors, IHPRewardsStorage {

/// @param _hp The address of the HP.
/// @return The reward claims.
function getHpRewardClaims(address _hp) external view returns (RewardClaim[] memory);

+
+ function forTesting_calculateAggregateBootstrapReleaseInLinearDecreaseRegion(
+ uint256 _t1,
+ uint256 _t2,
+ uint256 _releaseSchedule,
+ uint256 _marketAdjustmentFactor,
+ uint256 totalDuration
+) external returns (uint256);
}

diff --git a/test/HPRewards.t.sol b/test/HPRewards.t.sol
index ca78590..2aacf61 100644
--- a/test/HPRewards.t.sol
+++ b/test/HPRewards.t.sol
@@ -10,6 +10,7 @@ import {IHPRewardsErrors} from "../src/modules/HPRewards/interfaces/IHPRewardsEr
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {console2} from "forge-std/console2.sol";

+import "forge-std/Test.sol";

contract HPRewardsTest is Init {
uint256 private constant M = ProtocolConstants.DEFAULT_PRECISION;

@@ -139,6 +140,35 @@ contract HPRewardsTest is Init {
mockICNToken.approve(address(icnp), 1000000000e18);

}

+ function testPOC_rewardsNegativeCancelOutPositive() public {
+ /**
+ curve:
+ s = 10
+ te = 10
+ t from 0 to 10 increases

10

+ */
+ uint maxRewardsObtainable =

icnp.forTesting_calculateAggregateBootstrapReleaseInLinearDecreaseRegion(0,10,10e18,1e18,10);↪→

+
+ uint decreasedRewardAmountAfterTime =

icnp.forTesting_calculateAggregateBootstrapReleaseInLinearDecreaseRegion(0,20,10e18,1e18,10);↪→

+ console.log("maxRewardsObtainable",maxRewardsObtainable);
+
+ console.log("decreasedRewardAmountAfterTime",decreasedRewardAmountAfterTime);
+
+ }
+
+ function testPOC_incorrectFormulaCauseT1Omit() public {
+ /**
+ curve:
+ s = 10
+ te = 10
+ t from 0 to 2. should be [t1,t2) else t1 reward would be wasted. so should be 10 + 9 == 19. but here

it will be 9 + 8. also could just take the sum of total duration and verify that it omits the first
timestamp

↪→

↪→

+ */
+ uint rewardsCalculated =

icnp.forTesting_calculateAggregateBootstrapReleaseInLinearDecreaseRegion(0,2,10e18,1e18,10);↪→

+
+ console.log("rewards calculated",rewardsCalculated);
+
+ }
+

Recommendation: Limit t2 to basis + RELEASE_SCHEDULE_DURATION.
ICN Protocol: Fixed in PR 191.
Cantina Managed: Fix verified.
3.3 Low Risk
3.3.1 regionId based deposits overwrite previous amount
Severity: Low Risk
Context: ReservePool.sol#L62
Description: The ReservePool.deposit has to overloaded variations, one taking a single argument
deposit(uint256 depositAmount), and the other taking two arguments deposit(string calldata
regionId, uint256 baseReward). The later variation overwrites the baseReward on each subsequent call,rather than adding to the existing value:
$.regionReward[regionId].baseReward = baseReward;

If this function were used in the protocol, it would not be possible to withdraw all funds due to the restric-tion in the withdraw function:
require($.regionReward[regionId].withdrawnReward + amount <= $.regionReward[regionId].baseReward,

AmountExceedBaseReward());↪→

Recommendation: Notably, neither of these two functions are used within the protocol. As such, theseverity is noted as low. However, it is still recommended to remediate by removing them both from thecode base. This prevents the issue from occurring and reduces the overall surface area.
ICN Protocol: Fixed in PR 202.
Cantina Managed: Fix verified.
3.3.2 initiateHpRewardsClaim should always be manually invoked before node removal in-orderto not loose rewards
Severity: Low Risk
Context: (No context files were provided by the reviewer)

11

https://github.com/ICN-Protocol/icn-protocol/pull/191
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/reservePool/ReservePool.sol#L62
https://github.com/ICN-Protocol/icn-protocol/pull/202

Description: The removeScalerNode only commits capacity rewards of the hwClass and doesn't handlepending rewards of the node. This can cause nodes to loose their pending rewards in case they directlyinvoke removeScalerNode without invoking initiateHpRewardsClaim first.
function removeScalerNode(uint256 scalerNodeId) external override whenNotPaused {

ICNRegistryStorageData storage ds = getICNRegistryStorage();

// Commit the rewards for the node's region and hwClass since the total capacity will be changed
string memory clusterId = ds.scalerNodes[scalerNodeId].clusterId;
string memory regionId = ds.clusters[clusterId].regionId;
string memory hwClass = ds.scalerNodes[scalerNodeId].hwClass;
IHPRewards(address(this)).commitHpRewards(regionId, hwClass);

Recommendation: Either document this behaviour or process the pending rewards in removeScalarNodeitself.
ICN Protocol: Fixed in PR 189.
Cantina Managed: Fix verified.
3.3.3 Slashing is un-enforceable during final moments of commitment due to instant collateralwithdrawal
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: Users derive their security from the expectation that the scalar nodes are slashable through-out their commitment period. But the current implementation allows nodes to remove themselves in-stantly as soon as their commitment period ends (without enforcing any queue/delay mechanism). Thismeans that a node can behave maliciously in the final moments of their commitment and escape theslashing by removing themselves.
function slashScalerNode(uint256 scalerNodeId, uint256 slashedAmount) external override

onlyRole(ICN_OPERATOR_ROLE) {↪→

require(slashedAmount != 0, SlashingInvalidAmount(0, 1));
ICNRegistryStorageData storage rs = ICNRegistryStorage.getICNRegistryStorage();
require(rs.scalerNodes[scalerNodeId].status == ScalerNodeStatus.Validated,

IICNRegistryErrors.InvalidScalerNode());↪→

require(
rs.scalerNodes[scalerNodeId].collateralAmount >= slashedAmount,
SlashingInsufficientCollateral(rs.scalerNodes[scalerNodeId].collateralAmount, slashedAmount)

);

rs.scalerNodes[scalerNodeId].collateralAmount -= slashedAmount;

Recommendation: Document this behaviour or introduce a queue/delay mechanism for collateral with-drawal.
ICN Protocol: Acknowledged because the issue will be fixed separately after upgrading the slashing logic.The issue, while valid, will not occur until the node's commitment period has ended and by that time wewould have updated the slashing logic.
Cantina Managed: Acknowledged.
3.3.4 Booking can get overwritten in case the reservation price was 0
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: In order to check the existence of a booking, currently bookingPrice is checked against 0value. This is not accurate as an existing booking will have bookingPrice == 0 if the reservation price was0 (although unlikely). This will cause this booking to be freely overwritten.

12

https://github.com/ICN-Protocol/icn-protocol/pull/189

function extendBooking(uint256 scalerNodeId, uint256 period) external override whenNotPaused {

//

// Write the new booking to storage
Booking storage b0 = scalerNode.bookings[0];
Booking storage b1 = scalerNode.bookings[1];
if (b1.bookingPrice != 0) {

// Check that the first booking is expired before overwriting it
require(

b0.startBookingPeriod + b0.bookingPeriod < block.timestamp,
FirstBookingNotExpired(b0.startBookingPeriod + b0.bookingPeriod, block.timestamp)

);

scalerNode.bookings[0] = b1;
}

scalerNode.bookings[1] = newBooking;

emit BookingExtended(scalerNodeId, period);
}

Recommendation: Check for booking.startBookingPeriod == 0 instead.
ICN Protocol: Fixed in commit 868f534c.
Cantina Managed: Fix verified.
3.3.5 Used summation formula omits the first timestamp and hence its reward
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: Theused formula for the summation of linear region currently covers (t1,t2] instead of [t1,t2).This will cause the rewards of the first timestamp to be omitted.
function _calculateAggregateBootstrapReleaseInLinearDecreaseRegion(

uint256 _t1,
uint256 _t2,
uint256 _releaseSchedule,
uint256 _marketAdjustmentFactor

) internal pure returns (uint256) {
int256 value = int256(_t2 - _t1) * IM;
value -= ((int256(_t2) * int256(_t2 + 1) - int256(_t1) * int256(_t1 + 1)) * IM)

/ (2 * int256(ProtocolConstants.RELEASE_SCHEDULE_DURATION));
value = value < 0 ? int256(0) : value;
return (uint256(value) * _marketAdjustmentFactor * _releaseSchedule) / M;

}

Apply the diff in the finding "Not capping t2 to basis + ProtocolConstants.RELEASE_SCHEDULE_DURATIONwill cause lost rewards due to negative value addition" and run forge test --mt testPOC_incorrectFor-
mulaCauseT1Omit -vv. It can be seen that the reward calculation omits the reward of the first timestamp.
Recommendation: Change the range to cover [t1, t2) instead.
ICN Protocol: Acknowledged. We ran a test tomeasure the amount of base rewards generated by a nodein an overall network configuration similar to what we expect in production. The difference in the baserewards generated by this node in the first day was 0.005%, which is within an acceptable error margin.The same applies despite using (t1, t2].
Cantina Managed: Acknowledged.
3.3.6 unclaimedHpRewards doesn't handle the case of 0 delegations causing incorrect reward re-porting
Severity: Low Risk
Context: (No context files were provided by the reviewer)

13

https://github.com/ICN-Protocol/icn-protocol/commit/868f534cfb807a2f25ca37bd70426f036d353901

Description: In case there are no delegations, the entire reward accrued should go to the node. But the
unclaimedHpRewards function doesn't consider this scenario and always assumes that nodeRewardSharepercentage of rewards will go to the delegators (and hence be subtracted from the nodeClaimableRe-wards).
function unclaimedHpRewards(uint256 _scalerNodeId)

public
view
override
returns (uint256 nodeClaimableRewards, uint256 delegatorRewards)

{

// ...

delegatorRewards = (unclaimedRewards * scalerNode.nodeRewardShare) / M;
(nodeClaimableRewards,,) = _calculateNodeRewardsLeftAfterRedirection(_scalerNodeId, unclaimedRewards -

delegatorRewards);↪→

nodeClaimableRewards += hs.scalerNodeData[_scalerNodeId].rewardDebt;
}

Recommendation: Include the scenario where nodeTotalDelegatedICNT == 0.
ICN Protocol: Fixed in PR 189.
Cantina Managed: Fix verified.
3.3.7 Users can DoS future node bookings by keeping < minBookingPeriod leftover
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: A booking should at least be minBookingPeriod (initially set to 3 months) long. A user canabuse this to make a node unbookable by booking a period of time such that the remaining commitment-Period is less than minBookingPeriod.
function bookCapacity(uint256 capacity, uint256 period, string calldata clusterId) external override

whenNotPaused {↪→

// ...

require($.minBookingPeriod <= period && period <= $.maxBookingPeriod, InvalidBookingPeriod()); // <<<

Eg:
commitment end = 100
minbookingPeriod = 10
at t == 50, a user books for 41

Now the capacity cannot be booked and the node will only receive capacity rewards for this timeframe.
Recommendation: For a booking always ensure that the remaining amount of commitment time is al-teast minBookingPeriod or is 0.
ICN Protocol: Acknowledged. This is part of the tokenomics design.
Cantina Managed: Acknowledged.
3.3.8 Excessively high capacity permitted when marketAdjustmentFactor or minCollateralPercentare at or near 0
Severity: Low Risk
Context: ICNRegistry.sol#L80-L88, ICNRegistry.sol#L91-L98
Description: The docs suggest a range of p ∈ (0, 1] for minCollateralPercent meaning a minimum of1e18 according to the implementation. There is, however, no validation to prevent a value of 0 frombeing set. Similarly, marketAdjustmentFactor may be set to 0 which will then DoS the validation in the
_calculateCapacityRewardsCheckPointIncreaseSinceLastUpdate function.

14

https://github.com/ICN-Protocol/icn-protocol/pull/189
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/ICNRegistry/ICNRegistry.sol#L80-L88
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/ICNRegistry/ICNRegistry.sol#L91-L98

When permitted to be 0, a high capacity may be registered with no collateral needed. What can make theissue more damaging is that temporarily setting 0 and later setting higher, can make a previously safecalculation revert due to overflow.
Recommendation: Consider a reasonable range for marketAdjustmentFactor. Enforce at the time ofsetting that minCollateralPercent is a number between 1 and 100.
ICN Protocol: Fixed in PR 190.
Cantina Managed: Fix verified.
3.3.9 Separately calculating xSlope causes lower precision and possible revert due to roundingerror
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: The xSlope is calculated separately where a rounded down division is performed. This low-ers the precision that is attainable in the calculations and can cause reverts due to lowIndex + 1 beinggreater than array length:
function calculateMaxApy(uint256 _collateralizationRate) public view override returns (uint256) {

// ...

uint256 xSlope = (maxX - minX) / (curveLength - 1); // <<<
uint256 lowIndex = (_collateralizationRate - minX) / xSlope;
if (((curveLength - 1) * (_collateralizationRate - minX)) % (maxX - minX) == 0) {

return ds.maxApyCurve[lowIndex];
}
int256 lowX = int256(lowIndex * xSlope + minX);
int256 lowY = int256(maxApyCurve[lowIndex]);
int256 highY = int256(maxApyCurve[lowIndex + 1]);
// ...

Eg:
curveLength == 7
collateralizationRate = 999999999999999999
xSlope = (maxX - minX) / (curveLength - 1) = 166666666666666666
lowIndex = (_collateralizationRate - minX) / xSlope = 6

Hence (lowIndex + 1) == 7 which gives out of bounds array access.
Recommendation: Inline the xSlope calculation wherever it is used.
ICN Protocol: Fixed in PR 200.
Cantina Managed: Fix verified.
3.4 Gas Optimization
3.4.1 Avoid duplicate sloads by using the expression's evaluated value
Severity: Gas Optimization
Context: HPDelegationICNT.sol#L562, LinkStaking.sol#L140
Description:

• First Instance: A revision as follows eliminates an SLOAD.
- linkStake.stakeId = $.stakeIdCounter;
- $.stakeIdCounter++;
+ linkStake.stakeId = $.stakeIdCounter++;

Original generated yul:

15

https://github.com/ICN-Protocol/icn-protocol/pull/190
https://github.com/ICN-Protocol/icn-protocol/pull/200
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/HPDelegationICNT/HPDelegationICNT.sol#L562
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/LinkStaking/LinkStaking.sol#L140

// sload to write to linkStake.stakeId
sstore(_4, sload(/** @src 43:6275:6291 "$.stakeIdCounter" */

0x1c11073d71c45bef9120006caf8fea8a61a41b4d1b4b911bb106459d47d1440a))↪→

// sload again to increment
update_storage_value_offset_uint256_to_uint256(increment_uint256(/** @src 43:1040:17800 "contract

LinkStaking is..." */ sload(/** @src 43:6275:6291 "$.stakeIdCounter" */
0x1c11073d71c45bef9120006caf8fea8a61a41b4d1b4b911bb106459d47d1440a)))

↪→

↪→

yul after revision:
// resulting yul
let _6 := sload(/** @src 43:6275:6291 "$.stakeIdCounter" */

0x1c11073d71c45bef9120006caf8fea8a61a41b4d1b4b911bb106459d47d1440a)↪→

update_storage_value_offset_uint256_to_uint256(increment_uint256(_6))
sstore(_4, _6)

• Second Instance: A second opportunity for the same savings is in the extra sload to read the newarray length after pushing to increase its length.
- ds.delegations[_delegator].push();
- UserDelegation storage userDelegation = ds.delegations[_delegator][ds.delegations[_delegator].length -

1];↪→

+ UserDelegation storage userDelegation = ds.delegations[_delegator].push();

Original generated yul:
// Array reference
let _1 := mapping_index_access_mapping_address_bytes32_of_address_30734(var_delegator)

// Increases array length
sstore(_1, add(oldLen, 1))

// Check length and references newly created array element in storage
let slot, offset := storage_array_index_access_struct_UserDelegation__dyn(_1, oldLen)

// Array reference
let _2 := mapping_index_access_mapping_address_bytes32_of_address_30734(var_delegator)

// Load length again
let length := sload(/** @src 29:24573:24599 "ds.delegations[_delegator]" */

mapping_index_access_mapping_address_bytes32_of_address_30734(var_delegator))↪→

// Length - =
let diff := add(length, not(0))
if gt(diff, length)
{

/// @src 20:252:259 "30 days"
mstore(/** @src -1:-1:-1 */ 0, /** @src 20:252:259 "30 days" */ shl(224, 0x4e487b71))
mstore(4, 0x11)
revert(/** @src -1:-1:-1 */ 0, /** @src 20:252:259 "30 days" */ 0x24)

}

// Same as `slot, offset` above
let _3, _4 := storage_array_index_access_struct_UserDelegation__dyn(_2, /** @src 29:24573:24610

"ds.delegations[_delegator].length - 1" */ diff)↪→

yul after revision, uses slot and skips extra length SLOADs:
let _1 := mapping_index_access_mapping_address_bytes32_of_address(var_delegator)
let oldLen := sload(_1)
if iszero(lt(oldLen, 18446744073709551616))
{

mstore(/** @src -1:-1:-1 */ 0, /** @src 20:252:259 "30 days" */ shl(224, 0x4e487b71))
mstore(4, 0x41)
revert(/** @src -1:-1:-1 */ 0, /** @src 29:976:31979 "contract HPDelegationICNT is..." */ 0x24)

}
sstore(_1, add(oldLen, 1))
let slot, offset := storage_array_index_access_struct_UserDelegation__dyn(_1, oldLen)

ICN Protocol: Fixed in PR 196.
Cantina Managed: Fix verified.

16

https://github.com/ICN-Protocol/icn-protocol/pull/196

3.4.2 The overloaded updateModule (without initdata argument) applies the onlyAdmin modifiertwice
Severity: Gas Optimization
Context: Proxy.sol#L84
Description: This function applies the onlyAdmin modifier then calls the other updateModule functionwhich again applies the same modifier.
Recommendation: Save gas by applying the modifier only once.
ICN Protocol: Acknowledged. Proxy contract is not upgradeable and has already been deployed. Thisfinding will not be fixed.
Cantina Managed: Acknowledged.
3.4.3 May use unchecked math to save small amounts of gas
Severity: Gas Optimization
Context: HPRewards.sol#L399-L400, HPRewards.sol#L411-L413, Slashing.sol#L34-L39,ReservePool.sol#L105-L107
Description: There are instances where the arithmetic is certain to not under/overflow due to an explicitcheck in the code preceding the operation.
Recommendation: Consider using unchecked math to save small amounts of gas.
ICN Protocol: Fixed in PR 201 and PR 206.
Cantina Managed: Fix verified.
3.4.4 Array elements deleted twice
Severity: Gas Optimization
Context: HPDelegationICNT.sol#L588-L591
Description: HPDelegationICNT._setMaxApyCurve iterates and deletes each element in the array beforedeleting the array itself. This results in the array elements being iterated over twice, once by the code andonce by the language level delete.
// First iteration

let var_i := /** @src -1:-1:-1 */ 0
for { }
/** @src 29:976:32053 "contract HPDelegationICNT is..." */ 1
{

var_i := /** @src 29:976:32053 "contract HPDelegationICNT is..." */ add(/** @src 29:25871:25874 "i++" */
var_i, /** @src 29:976:32053 "contract HPDelegationICNT is..." */ 1)↪→

}
{

if iszero(lt(var_i, /** @src 29:976:32053 "contract HPDelegationICNT is..." */ sload(/** @src
29:25848:25862 "ds.maxApyCurve" */
0x86284dd90e18a3083f5174fbac7645faf9a1f193a5535c362180782092a3ff07)))

↪→

↪→

{ break }

let _1, _2 := storage_array_index_access_uint256_dyn(var_i)

let _3 := sload(_1)

// Sets to 0
sstore(_1, and(_3, not(shl(shl(3, _2), not(0)))))

}

// Second iteration

let oldLen := sload(/** @src 29:25848:25862 "ds.maxApyCurve" */
0x86284dd90e18a3083f5174fbac7645faf9a1f193a5535c362180782092a3ff07)↪→

17

https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/Proxy/Proxy.sol#L84
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/HPRewards/HPRewards.sol#L399-L400
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/HPRewards/HPRewards.sol#L411-L413
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/Slashing/Slashing.sol#L34-L39
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/reservePool/ReservePool.sol#L105-L107
https://github.com/ICN-Protocol/icn-protocol/pull/201
https://github.com/ICN-Protocol/icn-protocol/pull/206
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/HPDelegationICNT/HPDelegationICNT.sol#L588-L591

sstore(/** @src 29:25848:25862 "ds.maxApyCurve" */
0x86284dd90e18a3083f5174fbac7645faf9a1f193a5535c362180782092a3ff07, /** @src -1:-1:-1 */ 0)↪→

if iszero(iszero(oldLen))
{

mstore(/** @src -1:-1:-1 */ 0, /** @src 29:25848:25862 "ds.maxApyCurve" */
0x86284dd90e18a3083f5174fbac7645faf9a1f193a5535c362180782092a3ff07)↪→

let data := keccak256(/** @src -1:-1:-1 */ 0, /** @src 29:976:32053 "contract HPDelegationICNT is..." */
0x20)↪→

let _4 := add(data, oldLen)
let start := data

for { } lt(start, _4) { start := add(start, 1) }
{

sstore(start, /** @src -1:-1:-1 */ 0)
}

}

Recommendation: Save gas by using the language level delete only delete ds.maxApyCurve;.
ICN Protocol: Fixed in PR 201.
Cantina Managed: Fix verified.
3.4.5 Revert early to save gas on storage write in reverting case
Severity: Gas Optimization
Context: LinkStaking.sol#L106-L110
Description/Recommendation: Moving minLinkStakingPeriod <= ProtocolConstants.MAX_MIN_-
LINK_STAKING_PERIOD_IN_SECONDS to appear before $.minLinkStakingPeriod = minLinkStakingPeriod;would skip the storage write in cases where the transactions revert. Saving a small amount of gas for thereverting scenario.
ICN Protocol: Fixed in commit c415dbac.
Cantina Managed: Fix verified.
3.5 Informational
3.5.1 Enforce a reasonable maximum on minWaitPeriodForClaimsWithdrawal to prevent admin er-ror
Severity: Informational
Context: LinkRewards.sol#L43
Description: minWaitPeriodForClaimsWithdrawal dictates when withdraws are permitted. This value isused non-retroactively meaning updates that affect claim are locked for the period, even if a lower periodis set by an admin later.
Recommendation: Adding validation to the setMinWaitPeriodForClaimsWithdrawal function to enforcea reasonable max would prevent admin errors.
ICN Protocol: Fixed in commit 41166f8f.
Cantina Managed: Fix verified.
3.5.2 Node registration reservationPrice is a maximum price not a minimum
Severity: Informational
Context: ICNRegistry.sol#L316
Description: Booking prices are determined by selecting the smaller of two possible prices:
bookingPrice = Math.min(getMaxBookingPrice(capacity, period, clusterId), reservationPrice * capacity * period);

18

https://github.com/ICN-Protocol/icn-protocol/pull/201
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/LinkStaking/LinkStaking.sol#L106-L110
https://github.com/ICN-Protocol/icn-protocol/commit/c415dbacbe8d6d62cd346053f07bbedf50b99fe5
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/LinkRewards/LinkRewards.sol#L43
https://github.com/ICN-Protocol/icn-protocol/commit/41166f8f7a63db272902ba21efa5e25a23be010c
https://github.com/ICN-Protocol/icn-protocol/blob/90a54a01fe453cd463f3dc77af597fd14f555623/src/modules/ICNRegistry/ICNRegistry.sol#L316

Recommendation: Ensure in documentation, and the UI, this style of pricing is well communicated. Nochanges to the code recommended.
ICN Protocol: Acknowledged. This will be included in documentation for booking pricing.
Cantina Managed: Acknowledged.
3.5.3 getCluster function doesn't return hwClass

Severity: Informational
Context: (No context files were provided by the reviewer)
Description: hwClass is one of the most important fields of a cluster but this is not returned.
function getCluster(string calldata clusterId)

external
view
override
returns (

bool status,
uint256 creationDate,
uint256 totalCapacity,
uint256 utilizedCapacity,
string memory _regionId,
uint256 maxPrice

)

Recommendation: Return hwClass as well.
ICN Protocol: Fixed in PR 192.
Cantina Managed: Fix verified.
3.5.4 registerScalerNode doesn't validate hwClass

Severity: Informational
Context: (No context files were provided by the reviewer)
Description: The registerScalerNode function allows an user to pass in non-existing hwClass. Dependingon the behaviour of the off-chain part, this can cause either the collateral to be lost or allow a user towithdraw their grantedCollateral without actually providing any capacity to the network.
function registerScalerNode(

string memory regionId,
string memory name,
uint256 hpId,
uint256 capacity,
LocationCode location,
uint256 reservationPrice,
string memory hwClass,
uint256 nodeRewardShare,
uint256 collateralAmount,
uint256 commitmentDuration

) external override whenNotPaused {

Recommendation: Validate hwClass for existance.
ICN Protocol: Fixed in PR 198.
Cantina Managed: Fix verified.
3.5.5 removeScalerNode sets the timestamp of nil regionId
Severity: Informational
Context: (No context files were provided by the reviewer)
Description: removeScalerNode has to be invoked for rejected scalar nodes in-order to reclaim the collat-eral. When doing so, the clusterId and regionId of the node will be nil. Since commitHpRewards is alwaysinvoked, this will set the hs.lastUpdatedTimestamp of nil regionId to block.timestamp.

19

https://github.com/ICN-Protocol/icn-protocol/pull/192
https://github.com/ICN-Protocol/icn-protocol/pull/198

function removeScalerNode(uint256 scalerNodeId) external override whenNotPaused {
ICNRegistryStorageData storage ds = getICNRegistryStorage();

// Commit the rewards for the node's region and hwClass since the total capacity will be changed
string memory clusterId = ds.scalerNodes[scalerNodeId].clusterId;
string memory regionId = ds.clusters[clusterId].regionId;
string memory hwClass = ds.scalerNodes[scalerNodeId].hwClass;
IHPRewards(address(this)).commitHpRewards(regionId, hwClass);

Recommendation: Invoke commtHpRewards only if ds.scalerNodes[scalerNodeId].status == ScalerN-
odeStatus.Validated.
ICN Protocol: Fixed in PR 189.
Cantina Managed: Fix verified.

20

https://github.com/ICN-Protocol/icn-protocol/pull/189

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Not updating nodeIndex when removing scalar nodes can cause future removals to revert
	Users can unstake a single link token several times making other link tokens to be non unstakeable
	Node removal will cause delegators to loose their assets and rewards
	Commitment end is not handled in _processAddCollateralFromNodeRewards causing underflow and stuck assets
	Incorrect nodeId is used to update existing delegation inside delegateUnclaimedRewards function

	Medium Risk
	Late delegation check causes collateral redirection to be skipped
	Slippage can cause user's to pay more for booking capacity than they are willing
	Lack of validation for nodeRewardShare allows a malicious node to DoS delegator withdrawals
	Link associated collateral is computed incorrectly inside getScalerNodeTotalCollateral
	Performing reward curve updation from (currentMonth + 1) can cause some portion of rewards to be unclaimable
	Not capping t2 to basis + ProtocolConstants.RELEASE_SCHEDULE_DURATION will cause lost rewards due to negative value addition

	Low Risk
	regionId based deposits overwrite previous amount
	initiateHpRewardsClaim should always be manually invoked before node removal in-order to not loose rewards
	Slashing is un-enforceable during final moments of commitment due to instant collateral withdrawal
	Booking can get overwritten in case the reservation price was 0
	Used summation formula omits the first timestamp and hence its reward
	unclaimedHpRewards doesn't handle the case of 0 delegations causing incorrect reward reporting
	Users can DoS future node bookings by keeping < minBookingPeriod leftover
	Excessively high capacity permitted when marketAdjustmentFactor or minCollateralPercent are at or near 0
	Separately calculating xSlope causes lower precision and possible revert due to rounding error

	Gas Optimization
	Avoid duplicate sloads by using the expression's evaluated value
	The overloaded updateModule (without initdata argument) applies the onlyAdmin modifier twice
	May use unchecked math to save small amounts of gas
	Array elements deleted twice
	Revert early to save gas on storage write in reverting case

	Informational
	Enforce a reasonable maximum on minWaitPeriodForClaimsWithdrawal to prevent admin error
	Node registration reservationPrice is a maximum price not a minimum
	getCluster function doesn't return hwClass
	registerScalerNode doesn't validate hwClass
	removeScalerNode sets the timestamp of nil regionId

