
Impossible CloudNetwork
Protocol
& Link Smart Contracts
Security Review

Cantina Managed review by:

Joran Honig, Lead Security Researcher

Hash, Security Researcher

October 7, 2025

Contents

1 Introduction 2
1.1 About Cantina . 2
1.2 Disclaimer . 2
1.3 Risk assessment . 2

1.3.1 Severity Classification . 2

2 Security Review Summary 3

3 Findings 5
3.1 High Risk . 5

3.1.1 ScalerNode can be removed before its utilized capacity is reset 5
3.2 Medium Risk . 5

3.2.1 Users are not guarded against price increase in the extendBooking path 5
3.2.2 Link token ids must be smaller than the max uint32 value 5

3.3 Low Risk . 6
3.3.1 Checkpoints may be increased even when reward amount is 0 due to rounding 6
3.3.2 Incorrect index is emitted in DelegationCreated event 6
3.3.3 The store32 library function should ensure input validity 6

3.4 Gas Optimization . 7
3.4.1 Node removal always swaps nodes . 7

3.5 Informational . 7
3.5.1 Limited domain isolation between modules . 7
3.5.2 Inconsistency in the reward formula b/w implementation and documentation 7
3.5.3 Introduce Fuzz Testing and Testing Enhancements . 8

1

1 Introduction

1.1 About Cantina

Cantina is a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity level Impact: High Impact: Medium Impact: Low

Likelihood: high Critical High Medium

Likelihood: medium High Medium Low

Likelihood: low Medium Low Low

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High
findings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be
fixed as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings are a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not impact
the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

ICN builds the first composable, permissionless and truly open cloud ecosystem, this without compromising
performance.

From Aug 24th to Aug 29th the Cantina team conducted a review of icn-protocol and icn-link-smart-contract
on commit hashes 7506e28e and deff5e3d respectively. The team identified a total of 10 issues:

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 1 1 0

Medium Risk 2 2 0

Low Risk 3 3 0

Gas Optimizations 1 1 0

Informational 3 1 2

Total 10 8 2

The Cantina Managed team reviewed Impossible Cloud’s icn-protocol and icn-link-smart-contract
holistically on commit hashes c93ab217 and d3cbae92 respectively.

In addition, the Cantina Managed team reviewed the following set of changes on top of the findings fixes:

ICN Link Smart Contract:

PR Description Cantina Managed Team’s
Response

Impossible Cloud’s Response

PR 81 Remove unused events and
deprecate variable

Fix verified. Removes unused
code.

-

PR 82 Fix natspec comments Fix verified. No code changes. -

PR 83 Remove decreaseTime func-
tion

Fix verified. Removes unused
code.

-

ICN Protocol:

PR Description Cantina Managed Team’s
Response

Impossible Cloud’s Response

PR 279 Merge main (migration) to
release branch

Only reviewed src/mod-
ules/Migrations/Migra-
tion2.sol. The migration
can be called multiple times
which can cause undefined
behaviour. The migration
can be frontran causing it
to misbehave (claiming one
claim will change which index
points to what claim). As
a result you might migrate
the incorrect claims, or the
transaction could fail if the
relevant claim is not present.

Acknowledged, thismodule has
been removed and will not
be used anymore. The func-
tion was called with a previous
data check script but the check
should have been done in func-
tion.

3

https://github.com/ICN-Protocol/icn-protocol
https://github.com/ICN-Protocol/icn-link-smart-contract/
https://github.com/ICN-Protocol/icn-protocol/commit/7506e28e2163873355db281602bad78e537297ff
https://github.com/ICN-Protocol/icn-link-smart-contract/commit/deff5e3de4c75a38d4d07f23e7f47d9357cdd44a
https://github.com/ICN-Protocol/icn-protocol/commit/c93ab2171795bdbcd2a9954ebb247f54b110c049
https://github.com/ICN-Protocol/icn-link-smart-contract/commit/d3cbae921dcb0e6ef49bf9f77e124dca213cc8cf
https://github.com/ICN-Protocol/icn-link-smart-contract/pull/81
https://github.com/ICN-Protocol/icn-link-smart-contract/pull/82
https://github.com/ICN-Protocol/icn-link-smart-contract/pull/83
https://github.com/ICN-Protocol/icn-protocol/pull/279

PR 282 Fix breaking changes / stan-
dardise deprecation com-
ment / rename multi to
batch function

Change to HW class return
value are reverted in another
pr. Documentation for multi
claim rewards in interface is
not updated. The function
name change is not back-
wards compatible, and ex-
ternal contracts might de-
pend multiClaimAwards be-
ing available. Though, this
might be fine if you’re sure
there are no external integra-
tions that depend on this in-
terface.

Right, it was an error in the
first place. We still want to call
this function multi but for con-
sistency for now we named it
batch. We have a ticket to re-
name all function that do mul-
ticalls. So documentation re-
main correct even if not match-
ing function name. This func-
tion is new to this release and
still unused externally.

PR 285 Add V2 event for unindexed
array output

What’s the reason for this
change? Update after Im-
possible Cloud’s response:
This does add a bit of com-
plexity on the smart contract
side to support off chain sim-
plicity. That’s discretionary
though.

Indexer was needing array out-
put unindexed

PR 287 Fix unfixed breaking change Reverts changes to HW class
interface from PR 282. This
change requires an accompa-
nying migration as new pro-
tocol margin storage is not
initialized. Removing a vari-
able from a struct in storage
is dangerous, as future exten-
tions of the struct will re-use
that storage which is poten-
tially populated. This can lead
to some unfortunate vulner-
abilities. What is the reason
for changing from calldata
to memory? for _setProtocol-
Margin.

Correct. The new protocol
margin is initialized for all cur-
rent region/hwClass in initial-
izeICNRegistry and then set for
each registration of new re-
gion/hwClass. This parameter
protocolMargin was added to
struct in this release. So re-
moving it from HWClass struct
is just reverting the changes
back to current version. Goal
was to avoid introducing break-
ing changes on registerRegion
input params, which is calling
through _registerHwClass the
function _setProtocolMargin

PR 288 Add EraManager v3 initial-
izer

Fix verified. Only code
change is a version bump.

-

After the holistic review of the aforementioned PRs, it was concluded that all findings were addressed and
no new vulnerabilities were identified.

4

https://github.com/ICN-Protocol/icn-protocol/pull/282
https://github.com/ICN-Protocol/icn-protocol/pull/285
https://github.com/ICN-Protocol/icn-protocol/pull/287
https://github.com/ICN-Protocol/icn-protocol/pull/282
https://github.com/ICN-Protocol/icn-protocol/pull/288

3 Findings

3.1 High Risk

3.1.1 ScalerNode can be removed before its utilized capacity is reset

Severity: High Risk

Context: BookingManager.sol#L174-L201, ICNRegistry.sol#L419-L467

Description: Users can create bookings for resources on ScalerNodes. The BookingManager is responsible
for updating the utilized capacity trackers for the region, cluster and hardware provider for the node that's
being booked/re-booked. As a booking expires the updates to these trackers are not updated immediately,
instead a call to expireCapacity() needs to be made which will perform the desired operations.

Currently a node can be removed by a call to removeScalerNode() on ICNRegistry which does not check
whether the capacity for the node is still marked as utilized. After removing the node it will be impossible
to revert the utilized capacity updates that were made in creating the last booking for the removed node.

As a result various computations around protocol rewards will be inaccurate since they'll operate with
inaccurate utilized capacity numbers.

Recommendation: Adjust the implementation of removeScalerNode() with a check that ensures a node
can only be removed if there is no booking that still needs to be expired.

ICN Protocol: Fixed in PR 275.

Cantina Managed: Fix verified.

3.2 Medium Risk

3.2.1 Users are not guarded against price increase in the extendBooking path

Severity: Medium Risk

Context: BookingManager.sol#L149-L150

Description: Users are guarded against unexpected price increases in the bookCapacity function by
specifying a maxBookingPrice. But this guard is not present in the extendBooking function where similar
similar issue can occur.

Recommendation: Add a similar guard in extendBooking.

ICN Protocol: Fixed in PR 274.

Cantina Managed: Fix verified.

3.2.2 Link token ids must be smaller than the max uint32 value

Severity: Medium Risk

Context: LinkStaking.sol#L330-L334

Description: The modules supporting link staking and reward claiming assume that link token ids have a
value lower than the max uint32 value. Currently the ICN link contract supports minting tokens that do not
satisfy this constraint, as a result governance might accidentally mint tokens that are incompatible with
the modules.

Recommendation: Introduce a require check that ensures that _mint only succeeds for tokens that have
valid token ids.

ICN Protocol: Fixed in PR 80.

Cantina Managed: Fix verified.

5

https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/BookingManager/BookingManager.sol#L174-L201
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/ICNRegistry/ICNRegistry.sol#L419-L467
https://github.com/ICN-Protocol/icn-protocol/pull/275
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/BookingManager/BookingManager.sol#L149-L150
https://github.com/ICN-Protocol/icn-protocol/pull/274
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/LinkStaking/LinkStaking.sol#L330-L334
https://github.com/ICN-Protocol/icn-link-smart-contract/pull/80

3.3 Low Risk

3.3.1 Checkpoints may be increased even when reward amount is 0 due to rounding

Severity: Low Risk

Context: HPDelegationICNT.sol#L694-L696

Description: The batchInitiateDelegationRewardsClaim function only checks that the sum of _unclaime-
dRewards has to be non-zero. This allows individual claims to have 0 as the reward amount due to rounding
in which case the checkpoints are still incremented. This can cause users to lose dust amount of rewards
continuously.

Recommendation: Revert in case a single _claimAmount is 0.

ICN Protocol: Fixed in PR 271.

Cantina Managed: Fix verified.

3.3.2 Incorrect index is emitted in DelegationCreated event

Severity: Low Risk

Context: HPDelegationICNT.sol#L662-L670

Description: The DelegationCreated event is supposed to emit the index of the locked delegation rather
than the node delegation's index. But the implementation currently emits the index of the nodeDelegation.

/// @notice Emitted when a delegation is created.
/// @param nodeId The ID of the node
/// @param delegator The address of the delegator
/// @param lockedDelegationIndex The index of the locked delegation
/// @param apyScalingFactor The APY scaling factor for the delegation
/// @param unlockTimestamp The timestamp when the collateral can be unlocked
/// @param amount The amount of collateral delegated
event DelegationCreated(

uint256 indexed nodeId,
address indexed delegator,
uint256 indexed lockedDelegationIndex,
uint256 apyScalingFactor,
uint256 unlockTimestamp,
uint256 amount

);

Recommendation: Emit the UserDelegation index.

ICN Protocol: Fixed in PR 268.

Cantina Managed: Fix verified.

3.3.3 The store32 library function should ensure input validity

Severity: Low Risk

Context: ArraysLib.sol#L8-L40

Description: The store32() function is used to efficiently store an array of integers in storage. There is a
notable difference between the input type and output type. Namely the storage array is for uint32 and
the input array contains uint256. It functions correctly if all numbers in the input array are smaller than
type(uint32).max. However, the functions' behavior becomes undefined if the input has larger integers.
Since the parameter types allow uint256 the function should function under all potential values of that
type.

Recommendation: Introducing a require ensuring the input values are lower than the maximum uint32
value or changing the input type to an array of uint32 would ensure the function has no undefined or
inaccurate behavior.

ICN Protocol: Fixed in PR 273.

Cantina Managed: Fix verified.

6

https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/HPDelegationICNT/HPDelegationICNT.sol#L694-L696
https://github.com/ICN-Protocol/icn-protocol/pull/271
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/HPDelegationICNT/HPDelegationICNT.sol#L662-L670
https://github.com/ICN-Protocol/icn-protocol/pull/268
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/common/utils/ArraysLib.sol#L8-L40
https://github.com/ICN-Protocol/icn-protocol/pull/273

3.4 Gas Optimization

3.4.1 Node removal always swaps nodes

Severity: Gas Optimization

Context: ICNRegistry.sol#L450-L453

Description/Recommendation: Swapping the final ScalerNode with the to-be-deleted node should only
be necessary when the to be deleted node is not the last node in the array.

ICN Protocol: Fixed in PR 269.

Cantina Managed: Fix verified.

3.5 Informational

3.5.1 Limited domain isolation between modules

Severity: Informational

Context: (No context files were provided by the reviewer)

Description: The architecture of ICN is aimed at having a single upgradable proxy contract that hasmultiple
modules responsible for parts of the protocol. As expected there are some dependencies betweenmodules.
For example, the BookingManager needs to know if a node is bookable and will depend on the ICNRegistry
module for that.

Each module is accompanied by a storage contract which provides an interface to the storage domain for
that module. Currently most cross-module operations will perform direct look-ups and mutations to the
storage of other modules.

This creates a situation where the responsibilities and dependencies between modules can be more
opaque. For example, the BookingManager is responsible for recording the utilized capacity of resources
otherwise managed by the ICNRegistry. In bug #1 we see that this leads to a potential misaccounting of
capacities since ICNRegistry does not account for utilized capacity.

Recommendation: It is worth exploring the introduction of internal functions to storage contracts that
wrap external reads and writes to make cross-module dependencies explicit. This will not prevent bugs
but can help with code understanding.

ICN Protocol: Acknowledged.

Cantina Managed: Acknowledged.

3.5.2 Inconsistency in the reward formula b/w implementation and documentation

Severity: Informational

Context: Node Capacity Rewards.md

Description: According to the documentation rewards should be distributed as.

Rbase(ni, t) =
xni∑

ni∈C xni
(t)

(t)cG(t)uG(t)bG(t)

where xni
(t) is the total capacity of the node ni at the time t.

But the implementation uses targetCapacity in the denominator rather than
∑

xni
(t).

Recommendation: Correct the documentation.

ICN Protocol: Fixed in PR 270.

Cantina Managed: Fix verified.

7

https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/src/modules/ICNRegistry/ICNRegistry.sol#L450-L453
https://github.com/ICN-Protocol/icn-protocol/pull/269
https://github.com/ICN-Protocol/icn-protocol/blob/7506e28e2163873355db281602bad78e537297ff/docs/icnt-rewards/%5B1%5D%20Node%20Capacity%20Rewards.md
https://github.com/ICN-Protocol/icn-protocol/pull/270

3.5.3 Introduce Fuzz Testing and Testing Enhancements

Severity: Informational

Context: (No context files were provided by the reviewer)

Description: The ICN codebase has several aspects that are quite amenable to fuzz testing and (bounded)
formal verification.

The following are some example areas:

• Bitmap implementation used for efficient batch staking and initial rewards computation.

• Complex arithmetic operations.

• Library implementation for array copies.

Testability: To make introducing fuzz testing easier it can help to isolate (more) pure logic in libraries. This
also aids in building a regular test suite and scaling the codebase as it grows in complexity.

For example, the logic that structures the link initial reward bitmap and the link staking bitmap implements
is roughly equivalent and generalizable. Though the operations are relatively straightforward, it is nice to
be able to test such low level operations directly. Implementing a bitmap library that efficiently supports
single & batch operations can greatly simplify the link modules while simultaneously allowing for extensive
unit tests and techniques such as fuzzing.

Fuzzing invariants: The areas of interest noted above can be tested in a stateless fashion, this is generally
easier both on the developer and the fuzzing tool. The following are example invariants that you might
consider introducing fuzz tests for:

1. Given two differing id's in the bitmap domain (e.g. link ids):

1. Marking the first will only work if it is not marked.

2. Marking only the first will not set the second as marked.

2. Given any list of integers the store32 function will populate a list in storage where for every index
the original array and storage array will have the same value.

Stateful fuzzing: There is also an opportunity for stateful fuzzing. For example bug #1 might have been
discovered by the following invariant:

The utilized capacity for a region/hp/cluster is equal to the sum of recorded utilized capacity of
those nodes that belong to the region/hp/cluster.

Similar invariants might be formulated for other aspects of cross module accounting. Note that stateful
fuzzing requires a more complex setup, so we recommend focussing on the invariants above first.

ICN Protocol: Acknowledged. This task is now part of our backlog.

Cantina Managed: Acknowledged.

8

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	ScalerNode can be removed before its utilized capacity is reset

	Medium Risk
	Users are not guarded against price increase in the extendBooking path
	Link token ids must be smaller than the max uint32 value

	Low Risk
	Checkpoints may be increased even when reward amount is 0 due to rounding
	Incorrect index is emitted in DelegationCreated event
	The store32 library function should ensure input validity

	Gas Optimization
	Node removal always swaps nodes

	Informational
	Limited domain isolation between modules
	Inconsistency in the reward formula b/w implementation and documentation
	Introduce Fuzz Testing and Testing Enhancements

